Traffic Impact Analysis

FOR
Creekside Village 60 Single Family Homes

Prepared By

DN Traffic Consultants, Inc.
PO Box 547
Preston, Washington 98050-0547

January 15, 2023

INTRODUCTION

The following report was prepared to address the traffic related impacts of a proposed single family residential development located in the city of Marysville, in the southeast area of the city limits. This study was prepared in conformance to the City's Traffic Impact Analysis guidelines.
To comply with City of Marysville requirements, an intersection analysis is required for all intersections impacted by 25 or more weekday PM peak hour trips. This analysis is conducted for a "Year of Opening" condition (typically 2 years out), and a "Horizon Year" condition (typically 8 years out).

This study includes analysis of weekday PM peak hour level of service (LOS) for the existing conditions (year 2022), Year of Opening conditions (2024) without and with the project, and Horizon Year conditions (2030) with and with the project at the following intersection:

1. $79^{\text {th }}$ Avenue NE / Soper Hill Road

In addition, analysis of the project's site access is included.
2. $\quad 44^{\text {th }}$ Street NE / North Site Access
3. $\quad 79^{\text {th }}$ Avenue NE $/ 40^{\text {th }}$ Street NE plus South Site Access Extension, and
4. $\quad 40^{\text {th }}$ Street NE / South Site Access (Horizon Year Analysis only).

Project Description

The proposed project includes the construction of a 60 -unit residential single family development. The site is located on the west side of $79^{\text {th }}$ Avenue NE between $44^{\text {th }}$ Street NE and $40^{\text {th }}$ Street NE within the city of Marysville. A vicinity map is provided in Figure 1.
The site is located on three parcels: Parcel \#29050200100300, Parcel \#29050200100200, and Parcel \#29050200100500. The site area is approximately 10 acres excluding the existing home. The zoning is R6.5 and is located in the East Sunnyside/Whiskey Ridge Master Plan Subarea. The allowed number of units is 78 based on MMC 22G.080.080. The proposed number of units is 60 single family detached homes. The site plan is shown in Figure 2.
Access to the site includes $44^{\text {th }}$ Street NE, and one to the proposed realignment of $40^{\text {th }}$ Street NE. The $40^{\text {th }}$ Street NE realignment is shown in Figure 2. This roadway would connect to $79^{\text {th }}$ Avenue NE at the existing tee-intersection with $40^{\text {th }}$ Street NE (east leg). The existing west leg, $40^{\text {th }}$ Street NE, would be terminated, and a new 4 -way intersection is proposed with the site development.

Figure 1: Vicinity Map with Site (north is up)

Figure 2: Site Plan (north is up)

Methodology

The analysis contained in this report is based on the City of Marysville traffic impact analysis guidelines, which identify analysis for intersections impacted with 25 or more peak-hour trips. The trip generation calculations are based on average trip generation rates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition. The trip distribution is based on existing and horizon year trip distributions provided by the City of Marysville.

Intersection analysis has been performed for the existing conditions, and the 2024 opening year at the intersection of $79^{\text {th }}$ Avenue NE at Soper Hill Road. No intersections are impacted by 25 or more in the 2030 Horizon Year. This study also includes analysis at the site access at $44^{\text {th }}$ Street NE and the access to $79^{\text {th }}$ Avenue NE at $40^{\text {th }}$ Street NE. The level of service analysis at the study intersections were performed in accordance with the Highway Capacity Manual (HCM) 6th Edition.

Existing Traffic Counts

Weekday PM Peak Hour turning movement counts were conducted in November of 2022 at the following four intersections:

1. Soper Hill Road/Sunnyside Boulevard
2. Soper Hill Road/79 ${ }^{\text {th }}$ Ave NE
3. $44^{\text {th }} \mathrm{St} \mathrm{NE} / 79^{\text {th }}$ Ave NE
4. $44^{\text {th }} \mathrm{St} \mathrm{NE} / 71^{\text {st }}$ Ave NE

All counts were conducted between 4:00 and 6:00 PM. The peak hour was found to be between 4:00 and 5:00 PM for all intersections. The percent truck/busses were also recorded by approach, as well as pedestrian activity. Based on the project trip assignment, only one intersection, Soper Hill Road $/ 79^{\text {th }}$ Ave NE was found to be impacted by 25 or more PM peak hour project trips. Figure 3 shows the PM peak hour volume at this intersection, plus the PM peak hour volume on the major street at the two future site access intersections.

Project Trip Generation

Trip generation rates, for the project, are based on the ITE Trip Generation Manual $11^{\text {th }}$ Edition. The project is comprised of 60 single family detached residential homes. The trip generation is based on rates per Land Use Code (LUC) 210. Per ITE definitions, Land Use Code 210, SingleFamily Detached Housing (sfdu), is defined as a single-family detached housing site that includes any single-family detached home on an individual lot. A typical site surveyed is a suburban subdivision. Even though these proposed lots are relatively small, this analysis does not use the newly defined "patio home" ITE definition for this project.

The property currently has two (2) existing single family detached homes on it. Trip generation rates for single family detached housing is also based on ITE LUC 210. Trip generation for the existing units, since they will not remain, are deducted from the site generated traffic volume.
Table 1 identifies project vehicular trip generation for the average weekday (24-hour) volume as well as the AM and PM peak hour volumes. The AM peak hours are assumed to occur between 7 AM and 9 AM whereas the PM peak hour occurs between 4 PM and 6 PM.

Table 1. Project Trip Generation

a per ITE Trip Generation $11^{\text {th }}$ Edition; LUC 210.
b The site has two existing home currently occupied that will be removed
c NET NEW is the estimated project trips minus the existing site use trips.

As shown in Table 1, the project is estimated to generate a total of 566 daily trips, 42 AM peak hour and 56 PM peak hour trips. This volume of PM peak hour trips is estimated to be added to the street network in the 2024 horizon year. The net new trips, as a result of site redevelopment would result in 547 daily, 41 AM , and 54 PM peak hour trips on the surrounding street system.

Trip Distribution/Traffic Assignment

The trip distribution/traffic assignment for the project was based on the traffic distribution percentages provided by the City of Marysville. This analysis assumes a trip distribution pattern for the Year of Opening (2024) condition, as well as one for the Horizon Year (2030) condition. A summary of each is presented below.

Year of Opening (2024) Distribution Percentages:

- $67^{\text {th }}$ Street NE
- $83^{\text {rd }}$ Avenue NE
- Local area
- Sunnyside Blvd
- SR 9
- Soper Hill Road
- SR 92

Total
to/from the northwest 41%
to/from the north 4%
southwest area ($71^{\text {st }}$ and $79^{\text {th }}$) $\quad 1 \%$
to/from the southwest 31%
to/from the south 17%
to/from east of SR $9 \quad 2 \%$
to/from east of SR $9 \quad 4 \%$
100\%

Horizon Year (2030) Distribution Percentages:

- $67^{\text {th }}$ Street NE (via $44^{\text {th }}$ Street NE) to/from the northwest 20%
- $67^{\text {th }}$ Street NE (via new $40^{\text {th }}$ Street NE) to/from the northwest 21%
- $83{ }^{\text {rd }}$ Avenue NE to/from the north 4%
- local area southwest area 1%
- Sunnyside Blvd to/from the southwest 31\%
- SR 9 to/from the south 17%
- Soper Hill Road to/from east of SR 9 2\%
- SR 92 to/from east of SR 9 $\quad 4 \%$

Based on the overall percentages, it was determined that approximately 60 percent of the project trips would have origins and destinations east and south of the site, and 40 percent would have origins and destinations northwest of the site.

The project traffic assignment for the Year of Opening (2024) is presented in Figure 4, and the project traffic assignment for the Horizon Year (2030) is presented in Figure 5.
The interlocal agreement between the City of Marysville and Snohomish County requires detailed development trip turning movement data at Snohomish County key intersections impacted with three or more directional trips on an approach or departure. The development will impact two (2) key intersections during the AM and PM peak-hours. The AM and PM peakhour key intersection impacts are shown in tabular form in Table 2 and 3, respectively.

Table 2: AM Peak-Hour Key Intersection Volumes (Snohomish County)

Intersection		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
$\# 116:$	Soper Hill Road at $71^{\text {st }}$ Avenue NE	0	0	0	9	0	0	0	0	2	0	0	0
$\# 297:$	SR-204 at Sunnyside Boulevard SE	0	0	9	0	0	0	3	0	0	0	0	0
$\# 147$	SR 9/S Lake Stevens Road	0	0	0	0	0	0	0	2	0	0	4	0
$\# 420$	SR 9/32 SE	Street	0	0	0	0	0	0	0	2	0	0	4

Table 3: PM Peak-Hour Key Intersection Volumes (Snohomish County)

	Intersection	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
$\# 116:$	Soper Hill Road at $71^{\text {st }}$ Avenue NE	0	0	0	6	0	0	$0 t$	0	11	0	0	0
$\# 297:$	SR-204 at Sunnyside Boulevard SE	0	0	6	0	0	0	11	0	0	0	0	0
$\# 147$	SR 9/S Lake Stevens Road	0	0	0	0	0	0	0	5	0	0	2	0
$\# 420$	SR 9/32 SE Street	0	0	0	0	0	0	0	5	0	0	2	0

The key intersection impacts are also shown in graphical form in Figure 6 below for the AM and PM peak-hours.

Figure 6: Snohomish County Key Intersections (north is up)

Level of Service

Level of service (LOS) is used to describe the degree of traffic congestion and driver comfort on streets or at intersections. The Highway Capacity Manual (HCM) describes the methodologies for calculating LOS on street segments and at signalized and unsignalized intersections.

According to the HCM (TRB Special Report \#209), there are six (6) levels of service by which the operational performance of the roadway system may be described. The levels of service range from LOS A, which indicates a relatively free-flowing condition, to LOS F, which indicates operational breakdown.
The level of service for a two-way stop controlled (TWSC) intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service is not defined for the intersection as a whole. Average control delay less than or equal to 10 seconds per vehicle is defined as LOS A. For LOS F, the average control delay is greater than 50 seconds per vehicle.
The level of service for an all-way stop controlled (AWSC) intersection is defined in terms of average control delay per vehicle. Level of service is defined for the intersection as a whole. Average control delay less than or equal to 10 seconds per vehicle is defined as LOS A. For LOS F, the average control delay is greater than 50 seconds per vehicle. A summary of the Level of Service Criteria is presented in Table 2.

Table 2. Level of service Criteria ${ }^{1}$

		Intersection Control Delay (Seconds per Vehicle)	
Level of Service	Expected Delay	Unsignalized	Signalized
A	Little/No Delay	≤ 10	≤ 10
B	Short Delays	>10 and ≤ 15	>10 and ≤ 20
C	Average Delays	>15 and ≤ 25	>20 and ≤ 35
D	Long Delays	>25 and ≤ 35	>35 and ≤ 55
E	Very Long Delays	>35 and ≤ 50	>55 and ≤ 80
F	Extreme Delays	>50	>80

1 per Highway Capacity Manual (HCM)

Level of service (LOS)for this report was calculated using Synchro, the intersection level of service based on the HCM 6. The result of the level of service analysis for the existing condition at the analysis intersections is shown in Table 3.

Table 3. 2022 PM Peak Hour Level of Service ${ }^{1}$

Intersection	Traffic	Total Entering	PM Peak Hour	
	Control	Volume	LOS	Delay
$79^{\text {th }}$ Avenue NE $/$ Soper Hill Road	Stop Sign (NB/SB)	603	C	15.4
$79^{\text {th }}$ Avenue NE/40	th Street NE	Stop Sign (WB)	94	A

[^0]As shown in Table 3, the side street approach LOS at both of the intersections shown are LOS C or better. The City of Marysville level of service threshold is D for all arterial functionally classified streets where there are three (3 or more) project generated vehicles per hour in both directions.

Future Conditions

The Future Conditions analysis includes several scenarios: 1) Year of Opening (2024) with and without Project, and 2) Horizon Year (2030) with and without the project. This also includes a discussion of background traffic growth assumptions plus pipeline traffic.

Historical Growth Rate

A two (2) percent per year background growth rate, based on City input and prior traffic studies for the area, was used for this analysis.

Background Traffic Volumes (Pipeline Development)

Background traffic volumes for both future year scenarios also include PM peak hour traffic from ten (10) pipeline projects in the area. City staff provided the pipeline projects. A list of the pipeline projects included in this analysis include the following:

1. Maplewood Crossing
2. Prospector D2
3. White Barn
4. Firerock
5. $87^{\text {th }}$ Assembly
6. Stevens Ridge
7. Inspiration Point
8. Holbrook Development
9. The Retreat
10. Wyndham Homes

Table 4 below, presents the total entering PM peak hour volume (TEV), at each of the analysis intersections, for existing, the Year of Opening (2024), and the Horizon Year (2030) conditions.

As shown in Table 4, there is only one off-site intersections impacted by 25 or more PM peak hour project trips for the Year of Opening. For the Horizon Year there are no off-site intersections impacted by 25 or more PM peak hour project trips. The north and south site access points are included in the table. The south site access is actually a realignment of the 40th Street NE west leg that will connect to the project's south access. 40th Street NE is proposed to extend west to 71 st Avenue NE after the Year of Opening conditions, and before the Horizon Year conditions. Some of the project's traffic will use this new roadway once built, these trips will be to and from the northwest.

A summary of the 2024 with and without project PM peak hour turning movement volumes for each intersection are shown in Table 4, and are presented in Figures 7 and 8.

A summary of the 2030 with and without project PM peak hour turning movement volumes for each intersection are also shown in Table 4, and are presented in Figure 9 and 10.

Table 4. 2022 PM Peak Hour TEV ${ }^{1}$

Intersection	$\begin{gathered} 2022 \text { PM } \\ \text { Peak } \end{gathered}$	Year of Opening (2024) PM Peak Hour TEV				
		$\begin{aligned} & \text { Background } \\ & \text { Growth } \\ & (2022-2024) \\ & \hline \end{aligned}$	Pipeline Traffic	TEV without Project	Project Traffic	TEV with Project
79th Avenue NE/Soper Hill Road	603	25	68	696	28	724
44th Street NE / North Site Access	176	8	168	352	26	378
79th Avenue NE/40th Street NE ${ }^{2}$	94	4	12	110	28	138
	Horizon Year (2030) PM Peak Hour TEV					
Intersection	$\begin{gathered} 2022 \text { PM } \\ \text { Peak } \\ \hline \end{gathered}$	$\begin{gathered} \text { Background } \\ \text { Growth } \\ (2022-2030) \\ \hline \end{gathered}$	Pipeline Traffic		Project Traffic	TEV with Project
79th Avenue NE/Soper Hill Road	603	104	53	760	18	778
44th Street NE / North Site Access	176	30	152	358	13	371
79th Avenue NE/40th Street NE ${ }^{3}$	94	15	66	175	30	205

1 TEV = Total Entering Vehicles
2 Assumes realignment of the west leg to align with the existing east leg. $40^{\text {th }}$ Street NE does not extend west beyond the project property
3 Assumes realignment of the west leg to align with the existing east leg, and extension of $40^{\text {th }}$ Street NE west to $71^{\text {st }}$ Avenue NE. Background traffic includes only traffic from pipeline development. Eleven of the project trips enter the site at the south end via the new westerly extension of $40^{\text {th }}$ Street NE.

Level of Service

A PM peak hour level of service analysis was conducted for the existing 2022 conditions, as well as the 2024 Year of Opening with and without the project based on existing intersection striping and traffic control, and peak-hour factors and heavy vehicle factors per the existing turning movement counts.

The 2024 Year of Opening level of service conditions for the PM peak hour at the analysis intersections are shown in Table 5.
Table 5. 2024 Year of Opening PM Peak Hour Level of Service ${ }^{1}$

Intersection Name	2024 PM Peak Hour without Project		2024 PM Peak Hour with Project	
	LOS	Delay	LOS	Delay
$79^{\text {th }}$ Avenue NE / Soper Hill Road	C	18.4	C	19.5
$44^{\text {th }}$ Street NE / North Site Access	n / a	n / a	B	10.9
$79^{\text {th }}$ Avenue NE $/ 40^{\text {th }}$ Street NE / South Site Access Extension	A	8.7	A	8.8

1 Based on HCM 6 LOS report

As shown in Table 5, the side street approach LOS at the intersections shown is LOS C or better.

For the Horizon Year (2030), the PM peak hour level of service analysis summary is shown in Table 6 . The analyses were conducted only for the site access locations since no off-site intersection was impacted by 25 or more PM peak hour project trips.

Table 6. 2030 Horizon Year PM Peak Hour Level of Service ${ }^{1}$

Intersection Name	2030 PM Peak Hour without Project		2030 PM Peak Hour with Project	
	LOS	Delay	LOS	Delay
$44^{\text {th }}$ Street NE $/$ North Site Access	n / a	n / a	B	10.8
$79^{\text {th }}$ Avenue NE $/ 40^{\text {th }}$ Street NE	B	10.5	B	10.7
$40^{\text {th }}$ Street NE $/$ South Site Access	n / a	n / a	A	8.9

1 Based on HCM 6 LOS report
As shown in Table 6, the side street approach LOS at the intersections shown are LOS B or better. There are planned improvements to widen 44th Street NE to a three (3) -lane section thus the analysis at the north site access assumes this as constructed. For the Horizon Year, $40^{\text {th }}$ Street NE is assumed to be connected between $71^{\text {st }}$ Avenue NE and $79^{\text {th }}$ Avenue NE. The west leg of $40^{\text {th }}$ Street NE at $79^{\text {th }}$ Avenue NE is assumed to be constructed as part of the site development with $40^{\text {th }}$ Street NE extending to the south site access. The future extension of $40^{\text {th }}$ Street NE to the west includes all pipeline traffic as identified in the 10 traffic studies for those developments.

Mitigation Measures

The following list is a summary of mitigation evaluations for the City of Marysville as well as surrounding agencies that have an interlocal agreement with the City. The City of Marysville has an interlocal agreement with Snohomish County that provides for the payment of traffic mitigation fees to Snohomish County for City of Marysville developments. The City of Marysville also has an understanding with WSDOT for the payment traffic mitigation fees. The City of Marysville and the City of Lake Stevens have an interlocal agreement for mitigation fees for impacts along Soper Hill Road.

City of Marysville

The City of Marysville standard traffic mitigation fees have been calculated using the residential rate of $\$ 6,300$ per new unit. The Creekside Village development is proposed to have 60 new single-family residential units, however, there are two existing homes that will be removed; thus, the net new number of units is 58. That results in a City of Marysville traffic mitigation fee of $\$ 365,400(6,300 * 58=365,400)$.

City of Lake Stevens

The City of Marysville and the City of Lake Stevens have an interlocal agreement to fund improvements to Soper Hill Road from SR-9 to 83rd Avenue NE. The intersection of Soper Hill Road at 83 rd Avenue NE has already been improved. Traffic mitigation fees are therefore only required to be paid for impacts to the intersection of Soper Hill Road and 87th Avenue NE. The Soper Hill Road and 87th Avenue NE intersection project has a trip mitigation fee of $\$ 1,700.00$
per PM peak-hour trip. The Creekside Village development is expected to impact the Soper Hill Road/87th Avenue NE intersection with one (1) PM peak-hour trip in the Horizon Year. Therefore, Creekside Village would have a proportionate fee of $\$ 1,700$ for impact at that intersection. It should be noted that the development would not be subject to these fees if another development has been conditioned to construct the 87th Avenue NE roundabout prior to when these fees would be due.

Snohomish County

The City of Marysville and Snohomish County have an interlocal agreement that provides for the payment of traffic mitigation for impacts to Snohomish County roadways by City of Marysville developments. Traffic mitigation fees are based on predetermined area impacts or impacts to actual improvement projects. According to Section 3(a)2 of the Snohomish County Traffic Worksheet and Traffic Study Requirements for Developments in the City of Marysville, City of Marysville developments are only required to pay traffic mitigation fees for improvements in the Transportation Needs Report impacted with three directional peak-hour trips. The trip distribution shows that trips generated by the Creekside Village development will not impact any Snohomish County improvement projects in the Transportation Needs Report with three or more directional PM peak-hour trips. Therefore, Snohomish County traffic mitigation fees would not be required for the subject development.

Washington State Department of Transportation (WSDOT)

Developments are only required to mitigate impacts to improvement projects identified on WSDOT's Exhibit C list if the development is expected to impact the project with three or more directional PM peak-hour trips and if the improvement project has not already been completed or advertised for construction. Trips generated by the Creekside Village development are not expected to impact any WSDOT improvement projects on the Exhibit C list with three or more directional PM peak-hour trips. Therefore, WSDOT traffic mitigation fees would not be required for the subject development.

CONCLUSIONS

The Creekside Village development is proposed to construct 60 single-family residential units. As part of the site development, two (2) existing homes will be removed.
The development is estimated to generate 566 average daily trips with 42 AM peak-hour trips and 56 PM peak-hour trips. As a result of site redevelopment and removal of the two (2) existing homes, the estimated net new trips impacting the surrounding street system is 547 daily, 41 AM, and 54 PM peak hour trips.
The intersection of Soper Hill Road and $79^{\text {th }}$ Avenue NE is anticipated to operate at acceptable LOS C under the 2024 Year of Opening condition with the development. For the Horizon Year conditions, the project does not impact any of the arterial intersections with 25 more trips.

The traffic mitigation fees due to the City of Marysville traffic are estimated to be $\$ 365,400$. These traffic mitigation fees are presumed to help fund the improvements to 44th Street NE. The traffic mitigation fees due to the City of Lake Stevens are estimated to be $\$ 1,700$. Traffic mitigation fees are estimated to be zero for impacts to Snohomish County and WSDOT critical locations.

TECHNICAL APPENDIX

Intersection Turning Movement Volumes
 PM Peak Hour

PM Peak Hour Level of Service Results

> 2022 Existing 2024 with and without Project (Year of Opening) 2030 with and without Project (Horizon Year)

79th Avenue NE/Soper Hill Road
PM Peak Hour: 4:00 PM - 5:00 PM
Date Collected: 11/8/2022

44th Street NE / North Site Access
PM Peak Hour: 4:00 PM - 5:00 PM
Date Collected (thru volumes): 11/7/2022

	$\begin{aligned} & \text { V } \\ & \text { © } \\ & \text { N } \end{aligned}$								
EBLT	0			0	0		0		0
EBT	89	0.89	3.35	4	93	97	190		190
EBRT	0			0	0		0	14	14
WBLT	0			0	0		0	2	2
WBT	87	0.82	6.25	4	91	71	162		162
WBRT	0			0	0		0		0
NBLT	0			0	0		0	8	8
NBT	0	0.00	0.00	0	0		0		0
NBRT	0			0	0		0	2	2
SBLT	0			0	0		0		0
SBT	0	0.00	0.00	0	0		0		0
SBRT	0			0	0		0		0
	176			8	184	168	352	26	378

79th Avenue NE/40th Street NE
PM Peak Hour: 4:00 PM - 5:00 PM
Date Collected: 11/7/2022

79th Avenue NE/Soper Hill Road
PM Peak Hour: 4:00 PM - 5:00 PM
Date Collected: 11/8/2022

44th Street NE / North Site Access
PM Peak Hour: 4:00 PM - 5:00 PM
Date Collected (thru volumes): 11/7/2022

79th Avenue NE/40th Street NE
PM Peak Hour: 4:00 PM - 5:00 PM

Date Collected: 11/7/2022

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\$			4	
Traffic Vol, veh/h	39	250	0	2	196	51	0	0	1	46	0	19
Future Vol, veh/h	39	250	0	2	196	51	0	0	1	46	0	19
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	80	80	80	92	92	92	72	72	72
Heavy Vehicles, \%	1	1	0	0	3	3	0	0	0	4	0	4
Mvmt Flow	42	272	0	3	245	64	0	0	1	64	0	26

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			*			\$			4	
Traffic Vol, veh/h	52	281	0	2	227	74	0	0	1	62	0	26
Future Vol, veh/h	52	281	0	2	227	74	0	0	1	62	0	26
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	80	80	80	92	92	92	72	72	72
Heavy Vehicles, \%	1	1	0	0	3	3	0	0	0	4	0	4
Mvmt Flow	57	305	0	3	284	93	0	0	1	86	0	36

Intersection													
Int Delay, s/veh	3.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	$\hat{\beta}$		${ }^{7}$	$\hat{\beta}$			¢			¢		
Traffic Vol, veh/h	0	0	10	0	0	17	18	40	8	15	30	0	
Future Vol, veh/h	0	0	10	0	0	17	18	40	8	15	30	0	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	53	53	53	52	52	52	81	81	81	
Heavy Vehicles, \%	0	0	0	0	0	0	23	23	23	0	0	0	
Mvmt Flow	0	0	11	0	0	32	35	77	15	19	37	0	

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}		1	个	Mr	
Traffic Vol, veh/h	190	14	2	162	8	2
Future Vol, veh/h	190	14	2	162	8	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	82	82	92	92
Heavy Vehicles, \%	3	3	6	6	0	0
Mvmt Flow	213	16	2	198	9	2

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	229	0	423	221
Stage 1	-	-	-	-	221	-
Stage 2	-	-	-	-	202	-
Critical Hdwy	-	-	4.16	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.254	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1316	-	591	824
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	837	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1316	-	590	824
Mov Cap-2 Maneuver	-	-	-	-	590	-
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	835	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		10.9	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		626	-	-	1316	-
HCM Lane V/C Ratio		0.017	-	-	0.002	-
HCM Control Delay (s)		10.9	-	-	7.7	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						

Major/Minor	Major1	Major2	Minor2		
Conflicting Flow All	20	0	-	0	10
\quad Stage 1	-	-	-	-	10
\quad Stage 2	-	-	-	-	0
	-				
Critical Hdwy	4.12	-	-	-	6.42
Critical Hdwy Stg 1	-	-	-	-	5.42
Critical Hdwy Stg 2	-	-	-	-	5.42
Follow-up Hdwy	2.218	-	-	-3.518	3.318
Pot Cap-1 Maneuver	1596	-	-	-1010	1071
\quad Stage 1	-	-	-	-1013	-

Stage 2
Platoon blocked, \%
Mov Cap-1 Maneuver 1596 - - 10101071
Mov Cap-2 Maneuver - - - - 1010
Stage 1 - - - - 1013

Stage 2

Approach	EB	WB	SB
HCM Control Delay, s	0	0	8.6

HCMLOS A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1596	-	-	-1010
HCM Lane V/C Ratio	-	-	-	-0.011
HCM Control Delay (s)	0	-	-	-8.6
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Intersection													
Int Delay, s/veh	3.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	$\hat{\beta}$		${ }^{7}$	$\hat{\square}$			¢			¢		
Traffic Vol, veh/h	0	19	0	0	27	0	0	46	9	16	39	0	
Future Vol, veh/h	0	19	0	0	27	0	0	46	9	16	39	0	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	53	53	53	52	52	52	81	81	81	
Heavy Vehicles, \%	0	0	0	0	0	0	23	23	23	0	0	0	
Mvmt Flow	0	21	0	0	51	0	0	88	17	20	48	0	

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}		1	个	Mr	
Traffic Vol, veh/h	195	0	0	163	0	0
Future Vol, veh/h	195	0	0	163	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	82	82	92	92
Heavy Vehicles, \%	3	3	6	6	0	0
Mvmt Flow	219	0	0	199	0	0

Major/Minor M	Major1		Major2		inor1	
Conflicting Flow All	0	0	219	0	418	219
Stage 1	-	-	-	-	219	-
Stage 2	-	-	-	-	199	-
Critical Hdwy	-	-	4.16	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.254	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1327	-	595	826
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	839	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1327	-	595	826
Mov Cap-2 Maneuver	-	-	-	-	595	-
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	839	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		-	-	-	1327	仡
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		0	-	-	0	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection							
Int Delay, s/veh 0							
Movement E	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	\dagger		*		
Traffic Vol, veh/h	0	19	27	0	0	0	
Future Vol, veh/h	0	19	27	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage, \#	\#	0	0	-	0	-	-
Grade, \%	-	0	0	-	0	-	-
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	0	21	29	0	0	0	

Major/Minor	Major1	Major2	Minor2		
Conflicting Flow All	29	0	-	0	50
\quad Stage 1	-	-	-	-	29
\quad Stage 2	-	-	-	-	21
	-				
Critical Hdwy	4.12	-	-	-	6.42
Critical Hdwy Stg 1	-	-	-	-5.42	-
Critical Hdwy Stg 2	-	-	-	-5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318
Pot Cap-1 Maneuver	1584	-	-	-959	1046
\quad Stage 1	-	-	-	-	994

\quad Stage 2	-	-	-	-	1002
Platoon blocked, $\%$		-	-	-	
Mov Cap-1 Maneuver	1584	-	-	-	959
Mov Cap-2 Maneuver	-	-	-	-	959
Stage 1	-	-	-	-	
Stage 2	-	-	-	-1002	-

Intersection													
Int Delay, s/veh	5.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	$\hat{\beta}$		${ }^{7}$	$\hat{\beta}$			¢			¢		
Traffic Vol, veh/h	0	24	6	0	34	19	12	46	9	16	39	0	
Future Vol, veh/h	0	24	6	0	34	19	12	46	9	16	39	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control St	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	53	53	53	52	52	52	81	81	81	
Heavy Vehicles, \%	0	0	0	0	0	0	23	23	23	0	0	0	
Mvmt Flow	0	26	7	0	64	36	23	88	17	20	48	0	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}		1	个	Mr	
Traffic Vol, veh/h	195	7	1	163	4	1
Future Vol, veh/h	195	7	1	163	4	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	82	82	92	92
Heavy Vehicles, \%	3	3	6	6	0	0
Mvmt Flow	219	8	1	199	4	1

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	227	0	424	223
Stage 1	-	-	-	-	223	-
Stage 2	-	-	-	-	201	-
Critical Hdwy	-	-	4.16	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.254	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1318	-	591	822
Stage 1	-	-	-	-	819	-
Stage 2	-	-	-	-	838	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1318	-	590	822
Mov Cap-2 Maneuver	-	-	-	-	590	-
Stage 1	-	-	-	-	819	-
Stage 2	-	-	-	-	837	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		10.8	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		625	-	-	1318	-
HCM Lane V/C Ratio		0.009	-	-	0.001	-
HCM Control Delay (s)		10.8	-	-	7.7	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0	-	-	0	-

Major/Minor	Major1	Major2		Minor2			
Conflicting Flow All	50	0	-	0	77	40	
Stage 1	-	-	-	-	40	-	
Stage 2	-	-	-	-	37	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1557	-	-	-	926	1031	
Stage 1	-	-	-	-	982	-	
Stage 2	-	-	-	-	985	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1557	-	-	-	921	1031	
Mov Cap-2 Maneuver	-	-	-	-	921	-	
Stage 1	-	-	-		977	-	
Stage 2	-	-	-	-	985	-	

Approach	EB	WB	SB
HCM Control Delay, s	2	0	8.9

HCMLOS A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1557	-	-	-948
HCM Lane V/C Ratio	0.005	-	-	-0.017
HCM Control Delay (s)	7.3	0	-	-8.9
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-
HC.1				

[^0]: 1 Based on HCM 6 LOS report

