MINOR PRD

JURISDICTION: CITY OF MARYSVILLE, WA
 LOCATION: $83^{\text {RD }}$ AVE NE, SOUTH OF E SUNNYSIDE SCHOOL RD

Prepared for:

South Lake Ridge, LLC
$1051520^{\text {th }}$ Street SE
Suite 202
Lake Stevens, Washington 98258

Prepared by:

Kimley»Horn

Kimley»Horn

TRAFFIC IMPACT ANALYSIS

FOR

MINOR PRD

Prepared for:

South Lake Ridge, LLC

$1051520^{\text {th }}$ Street SE
Suite 202
Lake Stevens, Washington 98258

Prepared by:

Kimley-Horn and Associates, Inc.
2828 Colby Avenue
Suite 200
Everett, Washington 98201

(425) 708-8275

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

Kimley»"Horn

Table of Contents

1. Development Identification 1
2. Methodology 1
3. Trip Generation 4
4. TRIP DISTRIBUTION 4
5. Intersection Level of Service Analysis 5
5.1. Turning Movement Calculations 10
5.1.1. Snohomish County Intersections 10
5.1.2. Intersection Volumes 10
5.2. Level of Service Calculations 17
6. Site Access 17
7. Transportation Impact Fees 17
7.1. City of Marysville 18
7.2. Snohomish County 18
7.3. Washington State Department of Transportation. 18
8. CONCLUSIONS 18
List of Figures
Figure 1: Site Vicinity Map 2
Figure 2: Trip Distribution Opening Year - AM Peak-Hour 6
Figure 3: Trip Distribution Opening Year - PM Peak-Hour 7
Figure 4: Trip Distribution Horizon Year - AM Peak-Hour 8
Figure 5: Trip Distribution Horizon Year - PM Peak-Hour 9
Figure 6: 2023 Existing Turning Movements 12
Figure 7: 2026 Opening-Year Baseline Turning Movements 13
Figure 8: 2026 Opening-Year Future with Development Turning Movements 14
Figure 9: 2032 Horizon-Year Baseline Turning Movements 15
Figure 10: 2032 Horizon-Year Future with Development Turning Movements 16

Kimley»"Horn

List of Tables

Table 1: Level of Service Criteria 3
Table 2: Trip Generation Summary 4
Table 3: Key Intersection Volumes - AM Peak Hour 10
Table 4: Key Intersection Volumes - PM Peak Hour 10
Table 5: Level of Service Summary - Opening-Year 17
Table 6: Level of Service Summary - Horizon-Year 17
LISt OF Appendices
Trip Generation Calculations A
DISTRIBUTION AND COUNT DATA B
Turning Movement Calculations C
Level of Service Calculations. D

Kimley»Horn

1. Development Identification

Kimley-Horn and Associates, Inc. (Kimley-Horn) has been retained to provide a traffic impact analysis for the Minor PRD Development (Development). This report is intended to provide the City of Marysville (City) and Snohomish County (County) with the necessary traffic generation, trip distribution, and mitigation fee determination to facilitate their reviews of the Development. The Development is located on the east side of 83 rd Avenue NE, south of E Sunnyside School Road. A site vicinity map is included in Figure 1. The Development is proposed to consist of 29 single-family detached residential units. The site is currently listed as developed with a single-family detached residential unit per the Snohomish County Online Property Information (SCOPI) web map. The site will primarily access the City street network via one proposed access drive connected to $83{ }^{\text {rd }}$ Avenue NE through internal connectivity proposed with the Cornelius Lacey Development to the west of the site.

Brad Lincoln, responsible for this report and traffic analysis, is a licensed professional engineer (Civil) in the State of Washington and member of the Washington State section of the Institute of Transportation Engineers (ITE).

2. Methodology

Congestion at intersections and along arterials is generally measured in terms of level of service (LOS). In accordance with Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition by the Transportation Research Board, road facilities and intersections are rated between LOS A and LOS F, with LOS A being free flow and LOS F being forced flow or over-capacity conditions. The LOS at signalized, roundabout, and all-way stopcontrolled intersections is based on the average delay of all approaches. The LOS for two-way stopcontrolled intersections is based on average delays for the critical stopped approach. Geometric characteristics and conflicting traffic movements are taken into consideration when determining LOS values. A summary of the intersection LOS criteria is included in Table 1.

Kimley»Horn

Table 1: Level of Service Criteria

Level of Service ${ }^{1}$	Intersection Control Delay (Seconds per Vehicle)		
		Signalized Intignalized Intersections	
A	Little/No Delay	≤ 10	≤ 10
B	Short Delays	>10 and ≤ 15	>10 and ≤ 20
C	Average Delays	>15 and ≤ 25	>20 and ≤ 35
D	Long Delays	>25 and ≤ 35	>35 and ≤ 55
E	Very Long Delays	>35 and ≤ 50	>55 and ≤ 80
F	Extreme Delays 2	>50	>80

The LOS at two-way stop-controlled intersections is based on the average delay for the stopped approach with the highest delay. The LOS at all-way stop-controlled intersections and signalized intersections is based on the average delay for all vehicles. The LOS analysis for unsignalized and signalized intersections has been performed utilizing the Synchro 11 software. The City identifies acceptable level of service for intersections as LOS D for all intersections in the vicinity of the development.

The trip generation calculations for the Development are based on average trip generation rates published in the ITE Trip Generation Manual, $11^{\text {th }}$ Edition (2021). The opening year has been estimated for the year 2026, which accounts for a three-year construction window. The horizon year has therefore been evaluated for the year 2032.

[^0]
Kimley»Horn

3. Trip Generation

The Development is proposed to consist of 29 single-family detached units. The site is currently developed with one single-family detached residential unit that will be removed during construction. The trip generation calculations have been performed using data published by the ITE Trip Generation Manual, 11st Edition (2021) and the City rate of 1.0 PM peak-hour trips per single-family residential unit. The average trip generation rates for ITE Land Use Codes (LUC) 210, Single-Family Detached Housing, have been used for the trip generation calculations. The trip generation calculations for the Development are summarized in Table 2.

Table 2: Trip Generation Summary

Land Use	Size	Average Daily Trips (ADTs)	AM Peak-Hour Trips			PM Peak-Hour Trips		
			In	Out	Total	In	Out	Total
Single-Family Detached Housing ITE LUC 210	29 Units	273	5	15	20	18	11	29
Single-Family Detached Housing ITE LUC 210 (Removed)	-1 Unit	-9	0	-1	-1	-1	0	-1
TOTAL		264	5	14	19	17	11	28

The Development is anticipated to generate approximately 264 new ADTs with approximately 19 new AM peak-hour trips and 28 new PM peak-hour trips. The trip generation calculations are provided in Appendix A.

4. Trip Distribution

The trip distribution for the Development is based on comparison of Whiskey Ridge North and Whiskey Ridge East distributions established by the City since the site is located in the middle of the two areas. The trip distribution for the 2026 opening year is:

- 30% to and from the north along $83^{\text {rd }}$ Avenue NE
- 28% to and from the east
- 20% to and from the south along SR-9
- 5% to and from the east along SR-92
- 3% to and from the north along SR-9
- 22% to and from the south along $83^{\text {rd }}$ Avenue NE
- 20% to and from the west along $44^{\text {th }}$ Street NE

Kimley»Horn

The trip distribution for the 2032 horizon year is:

- 30% to and from the east
- 20% to and from the south along SR-9
- 5% to and from the east along SR-92
- 3% to and from the north along SR-9
- 2% to and from the north along $87^{\text {th }}$ Avenue NE
- 30% to and from the north along $83{ }^{\text {rd }}$ Avenue NE
- 20% to and from the south along $83^{\text {rd }}$ Avenue NE
- 20% to and from the west along $44^{\text {th }}$ Street NE

Detailed trip distributions for the AM peak-hour and PM peak-hour during existing conditions are shown in Figure 2 and Figure 3, respectively. Detailed trip distributions for the AM peak-hour and PM peak-hour during horizon-year conditions are shown in Figure 4 and Figure 5, respectively. The established distributions are provided in Appendix B.

5. Intersection Level of Service Analysis

The following intersections have been analyzed based on an impact of 25 trips generated by the Development:

1. $83^{\text {rd }}$ Avenue NE at Line Road/44 ${ }^{\text {th }}$ Street NE
2. $83^{\text {rd }}$ Avenue NE at E Sunnyside School Road

The intersections have been analyzed for the weekday PM peak-hour.

Kimley»"Horn

5.1. Turning Movement Calculations

5.1.1. Snohomish County Intersections

The interlocal agreement between the City and County requires detailed development trip turning movement data at County key intersections impacted with three or more directional trips on an approach or departure. The Development will impact two key intersections during the AM peak-hour and PM Peakhour. The AM peak-hour key intersection impacts are shown in tabular form in Table 3 and the PM peakhour key intersection impacts are shown in tabular form in Table 4.

Table 3: Key Intersection Volumes - AM Peak Hour

Intersection	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
\#147:	SR-9 at S Lake Stevens Road	0	0	0	0	0	0	0	2	0	0	5	0
\#420:	SR-9 at $32^{\text {nd }}$ Street SE	0	0	0	0	0	0	0	2	0	0	5	0

Table 4: Key Intersection Volumes - PM Peak Hour

| Intersection | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#147: | SR-9 at S Lake Stevens Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 3 | 0 |
| \#420: | SR-9 at $32^{2 n d}$ Street SE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 3 | 0 |

The key intersection impacts are also shown in graphical form in Figure 2 and Figure $\mathbf{3}$ for the AM and PM peak-hours, respectively.

5.1.2. Intersection Volumes

The existing PM peak-hour turning movements at the study intersections were collected by the independent count firm Traffic Data Gathering (TDG) in September 2023. The 2023 existing turning movements at the study intersections are shown in Figure 6. The count data is included in Appendix B.

The future analysis has been performed for an opening year of 2026, which represents when the Development is expected to be constructed and occupied. The 2026 opening year baseline turning movements have been calculated by applying a 3\% annually compounding growth rate applied to the 2023 existing turning movements. Additionally, development trips from the Cornelius Lacey and Taylor Property Developments have been added as pipeline to the 2026 baseline volumes to account for impacts to the study intersections by future developments. The 2026 opening year baseline turning movements at the study intersections are shown in Figure 7. The 2026 opening year future with development turning movements at the study intersections have been calculated by adding the trips generated by the Development to the 2026 opening year baseline turning movements, which include development trips from the two pipeline projects. The 2026 opening year future with development turning movements are shown in Figure 8. The pipeline data is included with the existing count data in Appendix B.

Kimley»Horn

The study intersections have also been analyzed for the 2032 horizon year conditions (baseline and with development). The horizon year analysis accounts for the typical six-year concurrency period after the expected opening year. The 2032 horizon year baseline turning movements have been calculated using the same 3% annually compounding growth rate. Sunnyside School Road is planned to be converted to a pedestrian trail and will therefore not be an intersection under the 2032 horizon year conditions. The volumes calculated to be turning to and from Sunnyside School Road under the 2032 baseline conditions have been assigned to the $44^{\text {th }}$ Street NE intersection with the addition of 50 eastbound and westbound through trips to account for the potential diversion of trips with the closure. The 2032 horizon year baseline turning movements at the study intersections are shown in Figure 9. The 2032 horizon year future with development turning movements at the study intersections have been calculated by adding the trips generated by the Development to the 2032 horizon year baseline turning movements. The 2032 horizon year future with development turning movements are shown in Figure 10. The turning movement calculations are included in Appendix C.

83RD AVENUE NE AT

 E SUNNYSIDESCHOOL ROAD

44TH ST NE

x
Study Intersection

Development Site
$\mathrm{PM} \longrightarrow \quad$ Turning Movement Volumes

83RD AVENUE NE AT

 E SUNNYSIDESCHOOL ROAD

44TH ST NE
(1)
x
Study Intersection
Development Site
$\mathrm{PM} \rightarrow$ Turning Movement Volumes
Kimley»Horn

83RD AVENUE NE AT

E SUNNYSIDE
SCHOOL ROAD

44TH ST NE

x
Study Intersection
Development Site
$\mathrm{PM} \longrightarrow \quad$ Turning Movement Volumes

83RD AVENUE NE AT

 E SUNNYSIDE SCHOOL ROAD

SOPER HILL RD

Study Intersection
Development Site
$\mathrm{PM} \longrightarrow \quad$ Turning Movement Volumes

83RD AVENUE NE AT

E SUNNYSIDE
SCHOOL ROAD

44TH ST NE

x
Study Intersection
Development Site
$\mathrm{PM} \longrightarrow \quad$ Turning Movement Volumes

Kimley»Horn

5.2. Level of Service Calculations

The level of service calculations have been performed utilizing the existing channelization, existing intersection control and peak-hour factors and heavy vehicle factors from the 2023 turning movement counts. All Development trips have been assigned to the extension of $44^{\text {th }}$ Street NE for feasibility and demonstrate the "worst-case" delay scenario. The level of service summary for the opening-year is included in Table 5 and the level of service summary for the horizon-year is included in Table 6 for the PM peakhour.

Table 5: Level of Service Summary - Opening-Year

Intersection	Approach	2023 Existing		2026 Baseline		2026 Future w Dev.	
		LOS	Delay	LOS	Delay	LOS	Delay
1: $83^{\text {rd }}$ Avenue NE at $44^{\text {th }}$ Street NE	Two-Way Stop Control	B	11.3 sec	B	12.2 sec	B	12.7 sec
2: $\quad 83^{\text {rd }}$ Avenue NE at E Sunnyside School Road	Two-Way Stop Control	B	10.8 sec	B	11.8 sec	B	12.0 sec

Table 6: Level of Service Summary - Horizon-Year

Intersection	Approach	2023 Existing		2032 Baseline		2032 Future w Dev.	
		LOS	Delay	LOS	Delay	LOS	Delay
$\begin{array}{ll} 1 & 83^{\text {rd }} \text { Avenue NE at } \\ : & 44^{\text {th }} \text { Street NE } \end{array}$	Two-Way Stop Control	B	11.3 sec	D	30.7 sec	D	34.0 sec
$\begin{array}{ll}2 & 83^{\text {rd }} \text { Avenue NE at } \\ : & \text { E Sunnyside School Road }\end{array}$	Two-Lane Roadway	B	10.8 sec	---	---	---	---

The analysis shows that the study intersections currently operate at LOS B during the PM peak-hour and are anticipated to remain at LOS B under the 2026 opening-year baseline and future with development conditions. The intersection of $83^{\text {rd }}$ Avenue NE at $44^{\text {th }}$ Street NE is anticipated to change to LOS D with the reassignment from E Sunnyside School Road under the 2032 horizon-year baseline and future with development conditions. The intersection LOS calculations are provided in the Appendix D.

6. Site Access

The Development is proposed to have connectivity to $83^{r d}$ Avenue NE west of the site via the adjacent Cornelius Lacey Development. The Development will not create any new connections to the public road network.

7. Transportation Impact Fees

The City has interlocal agreements with the County and Washington State Department of Transportation (WSDOT) for transportation impact fees. These transportation impact fees are based on the area wide traffic mitigation fee or actual impacts to improvement projects.

Kimley»"Horn

7.1. City of Marysville

The City traffic mitigation fees have been calculated using the residential rates of $\$ 6,300$ per new singlefamily unit. The Development is anticipated to consist of 29 total single-family units with credit for one existing single-family detached unit. The City traffic mitigation fees for the Development should therefore be $\$ 176,400.00$ for the 28 new single-family units.

7.2. Snohomish County

The City and County have an interlocal agreement that provides for the payment of traffic mitigation for impacts to County roadways by City developments. Traffic mitigation fees are based on predetermined area impacts or impacts to actual improvement projects. The only County improvement project in the area is along $88^{\text {th }}$ Street NE, between approximately $44^{\text {th }}$ Drive NE to $66^{\text {th }}$ Drive NE. This improvement project is not anticipated to be impacted by three directional PM peak-hour trips from the Development. County traffic mitigation fees should therefore not be required for the Development.

7.3. Washington State Department of Transportation

The WSDOT mitigation fees are based on impacts to improvement projects identified in the Exhibit C List included in the interlocal agreement between the County and WSDOT. There are not any WSDOT intersections on the Exhibit C List that will be impacted by three directional PM peak-hour trips generated by the Development. WSDOT transportation impact fees should therefore not be required for the Development.

8. Conclusions

The Development is proposed to consist of 29 single-family detached residential units. The site is currently listed as occupied with one single-family detached residential unit. The Development is anticipated to generate approximately 264 new ADTs with approximately 19 new AM peak-hour trips and 28 new PM peak-hour trips. The Development is anticipated to construct 28 new single-family units. The City traffic mitigation fees for the Development should therefore be $\$ 176,400.00$. Neither County nor WSDOT traffic mitigation fees should be required for the Development. The study intersections are anticipated to operate at an acceptable level of service with the development.

Kimley»"Horn

APPENDIX A

Trip Generation Calculations

Trip Generation for: Weekday
(a.k.a.): Average Weekday Daily Trips (AWDT)

									NET EXTERNAL TRIPS BY TYPE											
									IN BOTH DIRECTIONS						DIRECTIONAL ASSIGNMENTS					
			Gross Trips				Internal Crossover		TOTAL	PASS-BY		DIVERTED LINK		NEW	PASS-BY		DIVERTED LINK		NEW	
LAND USES	VARIABLE	$\begin{array}{\|c\|} \hline \text { ITE } \\ \text { LU } \\ \text { code } \end{array}$	Trip Rate	$\begin{aligned} & \% \\ & \text { IN } \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$	In+Out (Total)	\% of Gross Trips	$\begin{gathered} \hline \text { Trips } \\ \text { In+Out } \\ \text { (Total) } \\ \hline \end{gathered}$	In+Out (Total)	$\begin{array}{\|l} \hline \% \text { of } \\ \text { Ext. } \\ \text { Trips } \\ \hline \end{array}$	In+Out (Total)	$\begin{array}{\|l\|} \hline \% \text { of } \\ \text { Ext. } \\ \text { Trips } \\ \hline \end{array}$	In+Out (Total)	In+Out (Total)	In	Out	In	Out	In	Out
Single-Family Detached Housing	29 units	210	9.43	50\%	50\%	273	0\%	0	273	0\%	0	0\%	0	273	0	0	0	0	137	136
Single-Family Detached Housing (Removed)	-1 unit	210	9.43	50\%	50\%	-9	0\%	0	-9	0\%	0	0\%	0	-9	0	0	0	0	-5	-4
Total						264		0	264		0		0	264	0	0	0	0	132	132

Trip Generation for: Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 7 and 9 AM (a.k.a.): Weekday AM Peak Hour

									NET EXTERNAL TRIPS BY TYPE															
			Gross Trips						IN BOTH DIRECTIONS						DIRECTIONAL ASSIGNMENTS									
			Internal Crossover	TOTAL	PASS-BY		DIVERTED LINK		NEW	PASS-BY		DIVERTED LINK		NEW										
LAND USES	VARIABLE	$\begin{array}{\|c\|} \hline \text { ITE } \\ \text { LU } \\ \text { code } \\ \hline \end{array}$					Trip Rate	$\begin{aligned} & \% \\ & \text { IN } \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$	In+Out (Total)	$\%$ of Gross Trips	$\begin{gathered} \hline \text { Trips } \\ \text { In+Out } \\ \text { (Total) } \\ \hline \end{gathered}$	In+Out (Total)	$\begin{array}{\|l} \hline \% \text { of } \\ \text { Ext. } \\ \text { Trips } \\ \hline \end{array}$	In+Out (Total)	$\begin{aligned} & \hline \% \text { of } \\ & \text { Ext. } \\ & \text { Trips } \\ & \hline \end{aligned}$	In+Out (Total)	In+Out (Total)	In	Out	In	Out	In	Out
Single-Family Detached Housing	29 units	210	0.70	26\%	74\%	20	0\%	0	20	0\%	0	0\%	0	20	0	0	0	0	5	15				
Single-Family Detached Housing (Removed)	-1 unit	210	0.70	26\%	74\%	-1	0\%	0	-1	0\%	0	0\%	0	-1	0	0	0	0	0	-1				
Total						19		0	19		0		0	19	0	0	0	0	5	14				

Trip Generation for: Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 4 and 6 PM (a.k.a.): Weekday PM Peak Hour

Kimley»"Horn

APPENDIX B

Distribution and Count Data

83rd Avenue NE @ Line Road/44th Street NE

Marysville, WA

TURNING MOVEMENTS DIAGRAM PEAK HOUR SUMMARY

Kimley»"Horn

APPENDIX C

Turning Movement Calculations

Kimley»"Horn

APPENDIX D

Level of Service Calculations

Intersection												
Int Delay, s/veh	3											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\$			\$			\&	
Traffic Vol, veh/h	55	0	39	0	0	0	30	155	0	0	105	40
Future Vol, veh/h	55	0	39	0	0	0	30	155	0	0	105	40
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	60	0	43	0	0	0	33	170	0	0	115	44

Approach	EB	WB	NB	SB
HCM Control Delay, s	11.3	0	1.2	0
HCM LOS	B	A		

Minor Lane/Major Mvmt	NBL	NBT	NBREBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1427	-	-	679	-	1413	-

Approach	WB	NB	SB
HCM Control Delay, s	10.8	0	1.6
HCM LOS	B		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	-749	1344	-	
HCM Lane V/C Ratio	-	-0.173	0.026	-	
HCM Control Delay (s)	-	-10.8	7.8	0	
HCM Lane LOS	-	-	B	A	A
HCM 95th \% tile Q(veh)	-	-	0.6	0.1	-

Major/Minor	Minor2		Minor1			Major1			Major2				
Conflicting Flow All	427	427	159	451	454	196	186	0	0	196	0	0	
Stage 1	159	159	-	268	268	-	-	-	-	-	-	-	
Stage 2	268	268	-	183	186	-	-	-	-	-	-	-	
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-	
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-		2.209	-	-	
Pot Cap-1 Maneuver	540	521	889	520	503	848	1395	-		1383	-	-	
Stage 1	846	768	-	740	689	-	-	-	-	-	-	-	
Stage 2	740	689	-	821	748	-	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	-	
Mov Cap-1 Maneuver	- 528	506	889	482	488	848	1395	-	-	1383	-	-	
Mov Cap-2 Maneuver	r 528	506	-	482	488	-	-	-	-	-	-	-	
Stage 1	821	768	-	719	669	-	-	-	-	-	-	-	
Stage 2	719	669	-	777	748	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB
HCM Control Delay, s	12.2	0	1.2	0
HCM LOS	B	A		

Minor Lane/Major Mvmt	NBL	NBT	NBREBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1395	-	-	625	-	1383	-
HCM Lane V/C Ratio	0.026	-	-0.199	-	-	-	-
HCM Control Delay (s)	7.7	0	-	12.2	0	0	-
HCM Lane LOS	A	A	-	B	A	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.7	-	0	-

Approach	WB	NB	SB
HCM Control Delay, S	11.8	0	1.6
HCM LOS	B		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	-688	1303	-	
HCM Lane V/C Ratio	-	-0.228	0.031	-	
HCM Control Delay (s)	-	-11.8	7.9	0	
HCM Lane LOS	-	-	B	A	A
HCM 95th \%otile Q(veh)	-	-	0.9	0.1	-

Minor Lane/Major Mvmt	NBL	NBT	NBREBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1395	-	-	592	651	1378	-

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	-674	1295	-	
HCM Lane V/C Ratio	-	-0.241	0.031	-	
HCM Control Delay (s)	-	-	12	7.9	0
HCM Lane LOS	-	-	B	A	A
HCM 95th \%otile Q(ven)	-	-	0.9	0.1	-

Major/Minor	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	728	658	180	692	661	250	209	0	0	276	0	0	
Stage 1	296	296	-	336	336	-	-	-	-	-	-	-	
Stage 2	432	362	-	356	325	-	-	-	-	-	-	-	
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-	
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-		2.209	-	-	
Pot Cap-1 Maneuver	340	385	865	360	384	791	1368	-	-	1293	-	-	
Stage 1	715	670	-	680	644	-	-	-	-	-	-	-	
Stage 2	604	627	-	664	651	-	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	-	
Mov Cap-1 Maneuver	230	352	865	271	351	791	1368	-	-	1293	-	-	
Mov Cap-2 Maneuver	230	352	-	271	351	-	-	-	-	-	-	-	
Stage 1	689	636	-		620	-	-	-	-	-	-	-	
Stage 2	437	604	-	530	618	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB
HCM Control Delay, S	30.7	20.6	1	1.7
HCM LOS	D	C		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR		
Capacity (veh/h)	1368	-	-	335	468	1293	-	-
HCM Lane V/C Ratio	0.031	-	-	0.6	0.514	0.045	-	-
HCM Control Delay (s)	7.7	0	-	30.7	20.6	7.9	0	-
HCM Lane LOS	A	A	-	D	C	A	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	3.7	2.9	0.1	-	-

Intersection												
Int Delay, s/veh	12.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			\dagger			¢	
Traffic Vol, veh/h	74	61	51	48	57	125	39	203	57	58	137	53
Future Vol, veh/h	74	61	51	48	57	125	39	203	57	58	137	53
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-		None	-	-	None	-	-	None	-		None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, \%	1	+	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	81	67	56	53	63	137	43	223	63	64	151	58

Major/Minor	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	749	680	180	711	678	255	209	0	0	286	0	0	
Stage 1	308	308	-	341	341	-	-	-	-	-	-	-	
Stage 2	441	372	-	370	337	-	-	-	-	-	-	-	
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-	
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	.	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-	
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-		2.209	-	-	
Pot Cap-1 Maneuver	329	374	865	349	375	786	1368	-	-	1282	-	-	
Stage 1	704	662	-	676	640	-	-	-	-	-	-	-	
Stage 2	597	621	-	652	643	-	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	-	
Mov Cap-1 Maneuver	217	339	865	258	340	786	1368	-	-	1282	-	-	
Mov Cap-2 Maneuver	217	339	-	258	340	-	-	-	-	-	-	-	
Stage 1	677	624	-	650	616	-	-	-	-	-	-	-	
Stage 2	426	597	-	513	606	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB
HCM Control Delay, S	34	22.9	1	1.9
HCM LOS	D	C		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1368	-	-321	449	1282	-	-
HCM Lane V/C Ratio	0.031	-	-0.637	0.563	0.05	-	-
HCM Control Delay (s)	7.7	0	-	34	22.9	8	0
-							
HCM Lane LOS	A	A	-	D	C	A	A
HCM 95th \%tile Q(veh)	0.1	-	-	4.1	3.4	0.2	-
H							

[^0]: ${ }^{1}$ Source: Highway Capacity Manual, $6{ }^{\text {th }}$ Edition.
 LOS A: Free-flow traffic conditions, with minimal delay to stopped vehicles (no vehicle is delayed longer than one cycle at signalized intersection).
 LOS B: Generally stable traffic flow conditions.
 LOS C: Occasional back-ups may develop but delay to vehicles is short term and still tolerable.
 LOS D: During short periods of the peak hour, delays to approaching vehicles may be substantial but are tolerable during times of less demand (i.e., vehicles delayed one cycle or less at signal).
 LOS E: Intersections operate at or near capacity, with long queues developing on all approaches and long delays. LOS F: Jammed conditions on all approaches with excessively long delays and vehicles unable to move at times. ${ }^{2}$ When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection.

