E. Sunnyside PRD

City File # *PA 22-033* **Construction Drainage Report**

Prepared for

Natural 9 Holdings, LLC 10515 20th Street SE, Suite 202 Lake Stevens, WA 98258

Prepared by

Surveying

20210 142nd Ave NE Woodinville, WA 98072 (425) 806-1869

TABLE OF CONTENTS

Section	Title	
1	Project Overview	1-1
2	Risk Assessment Analysis and Temporary Erosion and Sediment Control Analysis and Design	2-1
3	Downstream Analysis	3-1
4	Detention and Water Quality Facility Analysis and Design	4-1
5	Operations and Maintenance Manual	5-1
6	Special Reports and Studies	6-1

APPENDICES

#	Title
1	Project Overview
3	Resource Review
4	Site Hydrology

SECTION 1: PROJECT OVERVIEW

The proposed E. Sunnyside PRD project is comprised of parcel numbers 00590700016201 and 00590700016202 which includes the existing single-family residence located at 4614 87th Ave NE, Marysville, WA. Total site parcel area equals approximately 4.29 acres. The project proposes the development of 28 single-family residences. The site is currently developed with four existing buildings on the two lots not being developed as well as a private driveway and associated improvements from 87th Ave NE. Development will also include frontage improvements to 87th Ave NE which will also provide access and utilities to the proposed residences. Due to the City of Marysville's future plans to convert E Sunnyside School Road to a future non-motorized trail corridor, no improvements are required to said roadway. The project area is located north of E Sunnyside School Road and west of 87th Ave NE in Marysville, WA. The site is located within the SW 1/4 of the SW 1/4 of Section 36, Township 30 N, Range 05 E, W.M. See Vicinity Map in the following pages for visual representation of the subject property.

1.1 EXISTING SITE

The project site consists of two parcels. Parcel 00590700016201 is occupied by a single-family home, garage, and outbuilding with a lumber stockpile area. Parcel 00590700016202 is connected to the west of parcel 00590700016201, and is occupied by a small shed at the northwest corner of the site. Pervious land cover for both parcels consist of pasture and landscaped areas. Access to both lots is via a gravel driveway on the eastern parcel from 87th Ave NE. All existing buildings will be demolished.

Site soils are classified as Tokul gravelly medial loam at 0 to 8 percent slope. According to Geotechnical Investigation by Cobalt Geosciences from December 20, 2021, the existing conditions of the site soils does not make widespread infiltration feasible. The report also confirms existing site slopes are generally sloping from north to south and southwest at 5% to 15%.

1.2 DOWNSTREAM ANALYSIS

Drainage from the existing site generally flows gently to the south/southwest towards E Sunnyside School Road. A high point located on parcel 00590700016201 extends from the mid-northeastern edge to the southwestern edge of said parcel and serves as a basin breakline for the area in which flows are directed east towards Steven's Creek and west towards King Creek. Refer to Section 3.0 "Downstream Analysis Report" for a more in-depth description as well as Figure 4.0 in Appendix 3 for a visual depiction of the downstream flow paths.

1.3 PROPOSED DEVELOPMENT

Development activities are proposed for both parcels. 28 single-family units will be constructed with access from the west of 87th Ave NE and from a future subdivision north of the site. Development will disturb 4.417 acres; this consists of the developed lots and access roads from the northern property and from 87th Ave. Frontage improvements along 87th Ave include the creation of an access point to the proposed lots, sidewalk, ADA ramps and landscaping. This proposed development is designed under the City of Marysville Drainage and Erosion Control Standards and the 2019 Department of Ecology Stormwater Management Manual for Western Washington (2019 SWMMWW). The proposed project will exceed the 10,000-sf effective impervious and the 5,000-sf pollution generating hard surface (PGHS) thresholds, and will therefore be required to meet flow control and runoff treatment requirements.

1.4 PROPOSED DRAINAGE SYSTEM

The project is required to meet flow control and water quality treatment requirements. This project proposes 47,916 sf of pollution generating hard surface and a total of 117,917 sf of impervious surfaces. All flows from newly developed impervious surfaces are proposed be collected and conveyed to one of two detention vaults located along the southern boundary of the site. The two detention vaults are designed to provide flow control for each of the two basins in the proposed development. Water quality treatment will be provided by utilizing a media filter drain downstream of the east detention vault and upstream of the west detention vault. Refer to Section 5.0 Stormwater Management for WWHM sizing output and more detail on facility design.

1.5 EROSION/SEDIMENTATION CONTROL

Erosion control measures that will be utilized during construction will include a combination of silt fence, plastic covering, a sediment trap, and storm drain inlet protection. The Stormwater Pollution Prevention Plan will be included in the construction submittal which will be submitted at a later date.

1.6 MINIMUM REQUIREMENTS

Per the 2019 SWMMWW, this project is new development and Minimum Requirements 1-9 apply to the proposed development.

Minimum Requirement #1: Preparation of Stormwater Site Plans: This Report along with the Construction Plans satisfies this minimum requirement.

Minimum Requirement #2: Construction Stormwater Pollution Prevention: A construction SWPPP will be provided as a separate submittal.

Minimum Requirement #3: Source Control of Pollution: Permanent source control BMPs are not applicable for the subject site since the associated activities for the new residential development do not fall within the types of facilities listed within Volume IV of the Drainage Manual (Residential developments are not required to implement source control BMP's). BMPs for erosion and sedimentation control are specified in the Construction Plans and the SWPPP.

Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls:

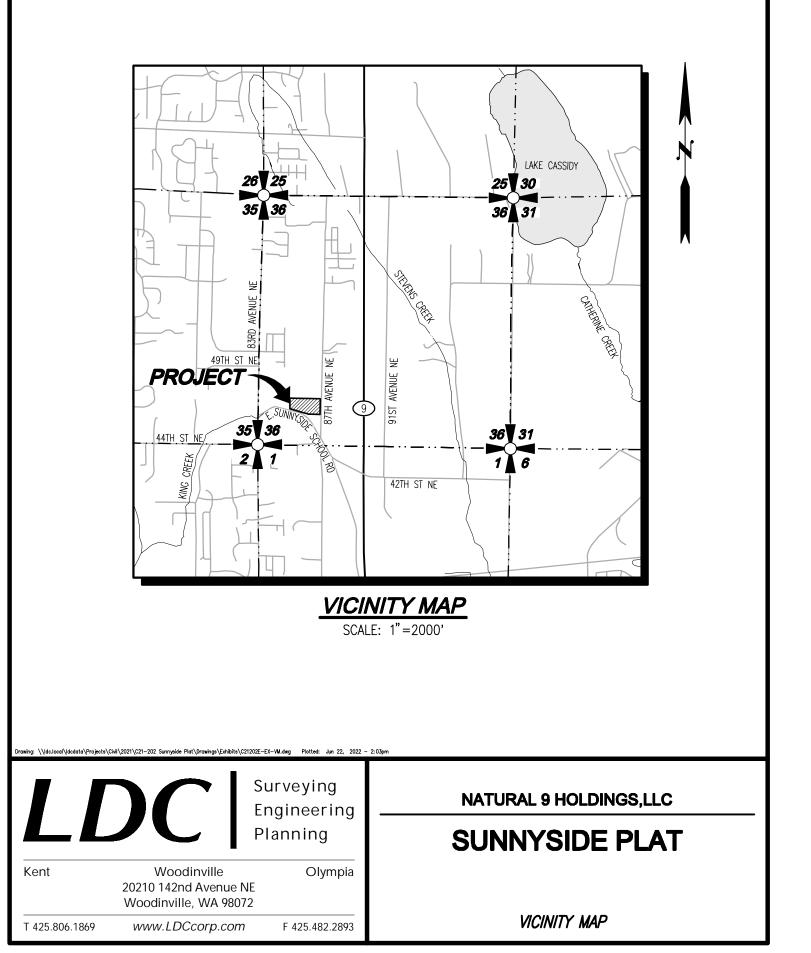
Existing drainage flows primarily southwest off the site with a smaller portion of the site along and near the frontage basin on 87th Ave NE on the eastern boundary of the site, flowing to the south. Runoff that flows to the southwest is noted as coming from the "West Basin" while flows from the east flowing south along and near the 87th Ave NE frontage is noted as coming from the "East Basin". In the developed condition, stormwater runoff from the on-site basins will be collected and detained in one of two detention facilities located at the southern edges of the site before being released to the existing City of Marysville storm system. Collected surface runoff will generally convey in the same directions as the predeveloped conditions outfall directions. See Downstream Analysis in Section 3 of this report for further information regarding the location of existing natural outfalls.

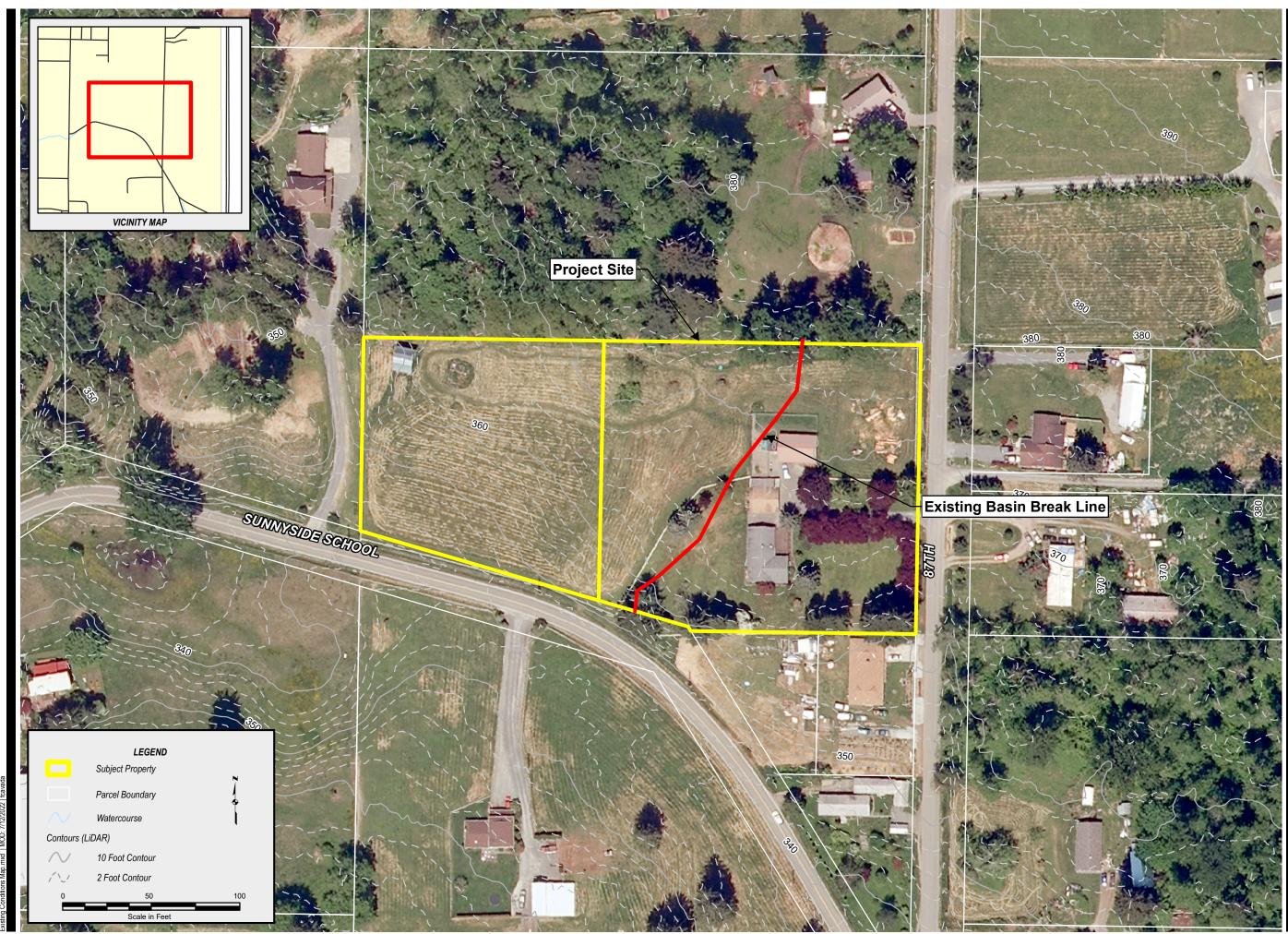
Minimum Requirement #5: On-site Stormwater Management:

The geotechnical investigation of site soils and underlying geology performed by Cobalt Geosciences dated December 20th, 2021, revealed that the dense site soil conditions make widespread infiltration infeasible. The investigation recommended a detention system with

overflow to City or County infrastructure. See Section 4 of this report for further information on the detention facility.

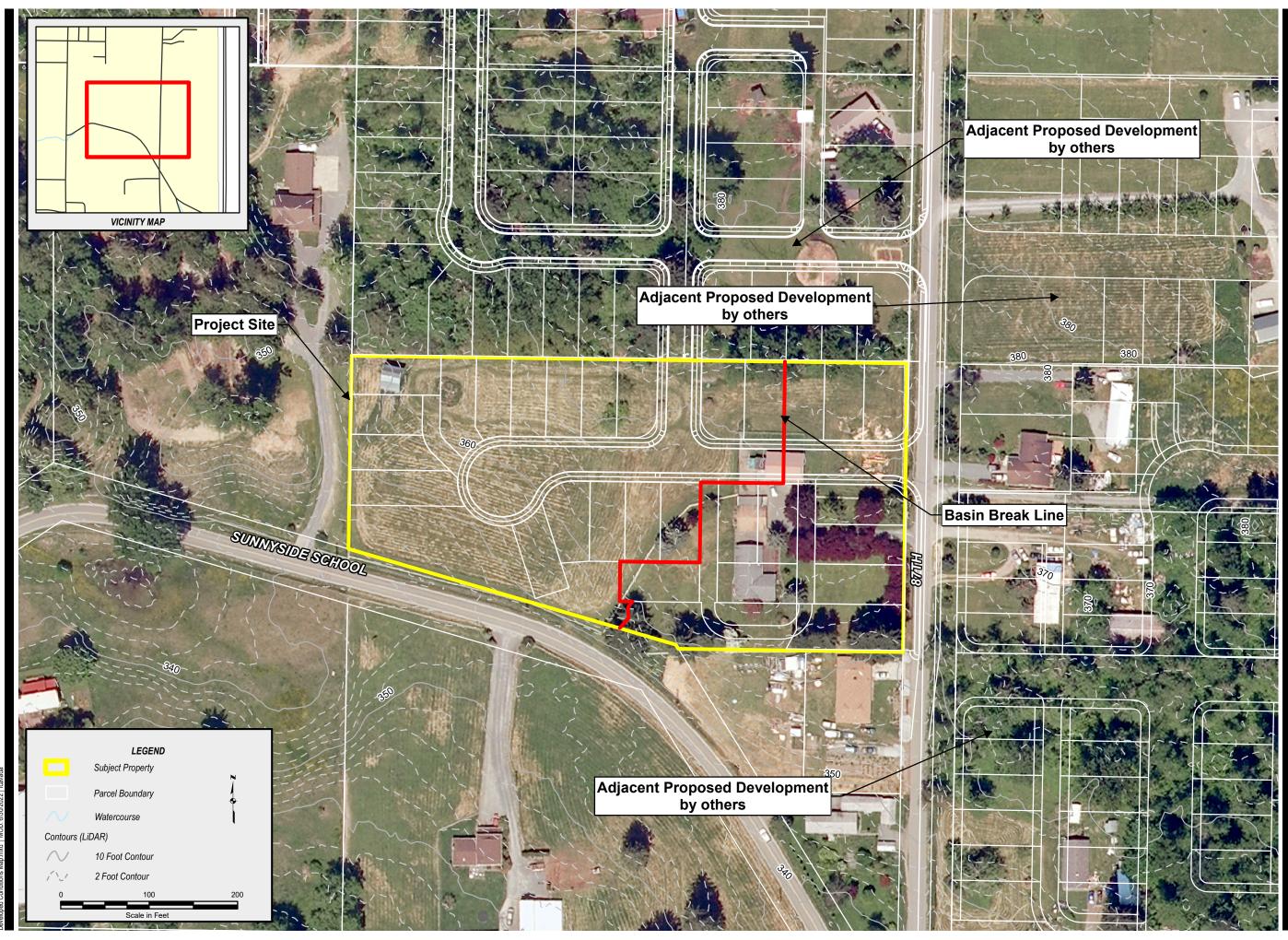
Minimum Requirement #6: Runoff Treatment: The project is required to provide runoff treatment as the 47,916 sf of proposed PGHS exceeds the 5,000 sf PGHS threshold. Media filter drains will be installed downstream of the east detention facility and upstream of the west detention facility to provide runoff treatment for each respective basin.


Minimum Requirement #7: Flow Control: The project is required to provide flow control as the proposed total effective impervious surfaces exceeds the 10,000-sf threshold. Flow control is proposed via two separate detention vaults for the East and West Basins and associated control structures to provide flow control for the developed condition flows. See Section 4 of this report for a summary of the facility sizing and design.


Minimum Requirement #8: Wetlands Protection: There are no wetlands onsite or immediately adjacent.

Minimum Requirement #9: Operation and Maintenance: See Operations and Maintenance in Section 6 of this report.

Appendix 1: Project Overview


- 1. Figure 1.0 Vicinity Map
- 2. Figure 2.0 Existing Conditions Map
- 3. Figure 3.0 Proposed Development Map

	Engineering SNOHOMISH COUNTY GIS PARCEL BOUNDARY Planning SNOHOMISH COUNTY GIS CONTOURS GENERATED FROM	Woodinville Kent 20210 142nd Avenue NE 1851 Central PI S, #101 20210 142nd Avenue NE 1851 Central PI S, #101 Woodinville, WA 98072 Kent, WA 98030	T 425.806.1869 www.LDCcorp.com F 425.482.2893
STATE REVISIO JOB NU DRAWII DESIGN DRAWII DATE: 7 SCALE: JURISD	1983 HARN PLANE W IMBER: CZ IMBER: C	ASHINGT C21-202 C21-202- ADA AVADA	ON

2.0

			nos	SOURCE INFORMATION
INALURAL & NULDINGS, LLU	Surveying	Surveying	SOURCE AGENCY	DESCRIPTION
		Engineering	SNOHOMISH COUNTY GIS PARCEL BOUNDARY	PARCEL BOUNDARY
KALLICOTT PLAT	して	Planning	SNOHOMISH COUNTY GIS	NOHOMISH COUNTY GIS CONTOURS GENERATED FROM
		Kent		THIS DATA HAS A STATED VERTICAL
PROPOSED DEVELOPMENT MAP	20210 142nd Avenue NE Woodinville, WA 98072	1851 Central PI 5, #101 Kent, WA 98030		ACCURACY OF APPROXIMATELY 1 FOOT.
	T 425.806.1869 www.LDCcorp.com F 425.482.2893	om F 425.482.2893		

STATEPLANE WASHINGTON
REVISION:
JOB NUMBER: C21-202
DRAWING NAME: C21-202-3.0
DESIGNER: FCAVADA
DRAWING BY: FCAVADA
DATE: 6/30/2022
SCALE: AS SHOWN
JURISDICTION: MARYSVILLE
FIGURE:

NAD 1983 HARN

3.0

SECTION 2: RISK ASSESSMENT ANALYSIS AND TEMPORARY EROSION AND SEDIMENT CONTROL DESIGN

2.1 TEMPORARY EROSION AND SEDIMENT CONTROL

A Stormwater Pollution Prevention Plan (SWPPP) will be provided as a separate document as a part of the construction submittal. The SWPPP report will be modeled under the guidelines of Volume II, Section 3 of the 2019 SWMMWW.

SECTION 3: DOWNSTREAM ANALYSIS REPORT

3.1 TASK 1: STUDY AREA DEFINITION AND MAPS

Snohomish County Bare Earth LiDAR, survey, and 2020 aerial photography were the best topographical references available for the area containing the site. The limits of the downstream analysis extend roughly 0.25 miles beyond the subject property's natural discharge location (See Figure 4.0, Downstream Analysis Map).

3.2 TASK 2: RESOURCE REVIEW

All of the resources below have been reviewed for existing and potential issues near the project site:

Adopted Basin Plans

No Adopted Basin Plans were located that include the project site.

Drainage Basin

This site is located within the Snohomish drainage basin/watershed and the Sunnyside and Lake Stevens sub-basins.

Floodplain / Floodway (FEMA) maps

According to FEMA floodplain mapping, the subject property is not within a floodplain. Reference the FEMA FIS study map 53061C0736F.

Critical Areas Map

No wetlands or critical areas were found onsite.

Drainage Complaints

No drainage complaints have been reported for the site.

Road Drainage Problems

No drainage problems were recorded.

Soil Survey

According to USGS soil maps, site soils are classified as Tokul gravelly medial loam at 0 to 8 percent slope.

Wetland Inventory Maps

There are no wetlands located onsite.

Migrating River Studies

Migrating River Studies are not applicable to the proposed site development.

Section 303d List of Polluted Waters

Washington State Department of Ecology's Water Quality Assessment for Washington shows no impacted or polluted waters within 0.25 miles of the site.

Water Quality Problems

No known water quality problems are present within the site or anywhere within the 0.25mile downstream flow path.

Stormwater Compliance Plans

Not applicable to the proposed project.

3.3 TASK 3: FIELD INSPECTION/DOWNSTREAM ANALYSIS

On November 24, 2021, a Downstream Analysis was performed at the site for runoff from the western basin of the site. The weather consisted of 41°F and overcast skies. On June 22, 2022, a second Downstream Analysis was performed at the site for runoff from the eastern basin. The following observations were verified during the visits.

The subject property is currently developed with a gravel access from 87th Ave NE within the right of way.

The natural discharge locations exist on-site and currently leave the site in two flow paths. One flow path generally discharges overland southwestward and south across property lines and continues westward until entering King Creek, which flows into Ebey Slough, and eventually releases into the Possession Sound. The second flow path generally discharges overland southward and exits the project boundary where flows continue southeasterly to Steven's Creek, which eventually releases into Lake Stevens. There is also a Figure 4.0, "Downstream Analysis Map" for a map exhibit of the discharge from the project site. The onsite flow paths will convey all developed flows as described below.

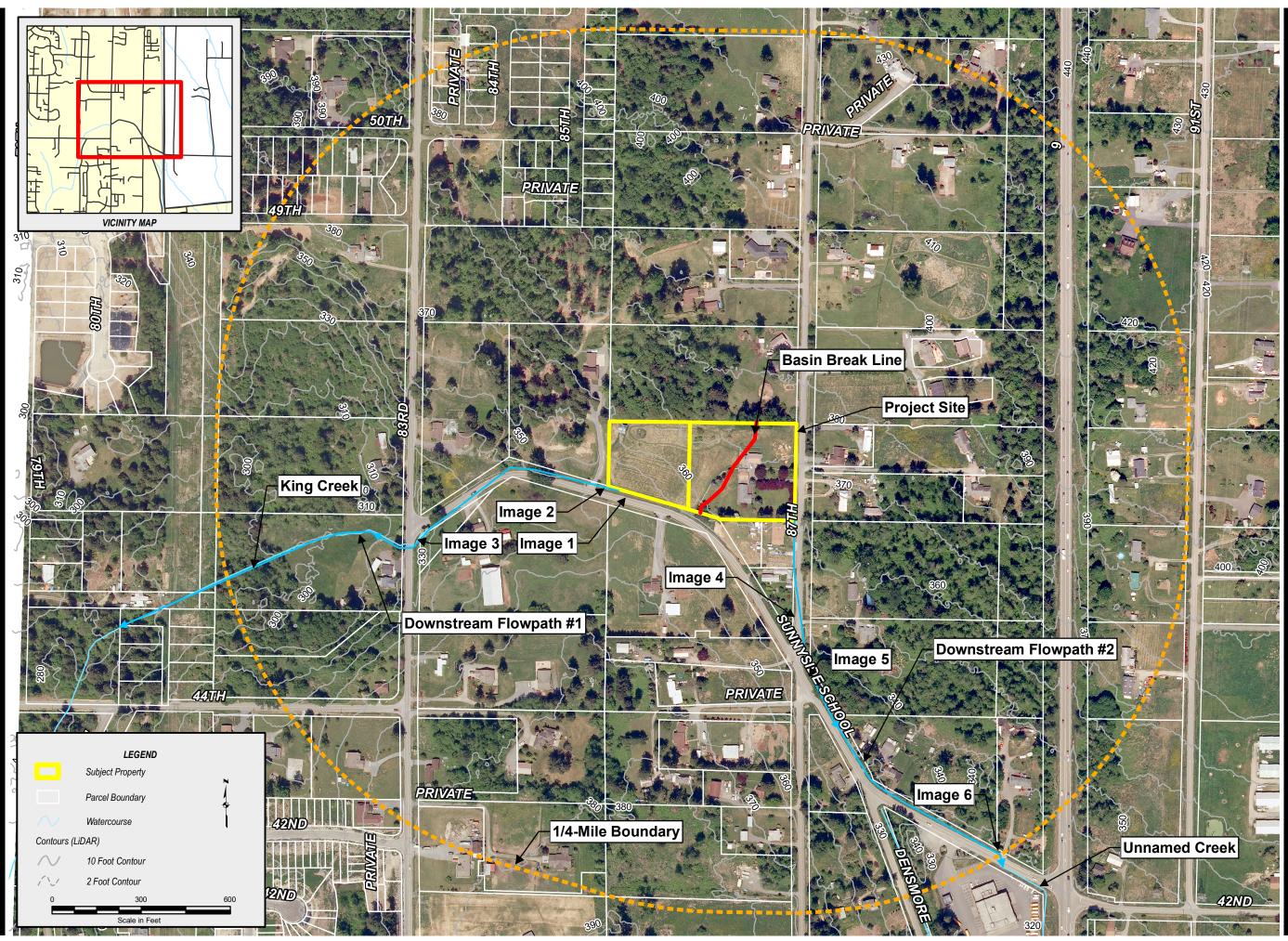
Developed Flow Paths

Runoff leaves the site westward via overland flow along Sunnyside School Road for approximately 695 LF. Flows is collected by a culvert near the intersection of 83rd Ave NE and Sunnyside School Road and is conveyed across 83rd Ave NE. After crossing the road, flow is conveyed 82 LF through a culvert before being discharged into King Creek. The flow in King Creek continues past the quarter-

mile boundary for this analysis and converges with Ebey Slough, which eventually discharges into the Possession Sound.

A second flow path from the eastern basin flows to the south along 87th Ave towards the Sunnyside School Road intersection. Southbound upstream flow from 87th Ave converges at the center of the intersection, which is a low point where flow is then directed to the southeast along Sunnyside School Road. There is a swale on the northside of Sunnyside School Road that carries flow past the quarter-mile boundary and into an unnamed stream tributary to Stevens Creek. The unnamed stream continues approximately 4,100 ft southeast until converging with Stevens Creek, which eventually discharges into Lake Stevens.

3.4 TASK 4: DRAINAGE SYSTEM DESCRIPTION AND PROBLEM DESCRIPTIONS


There are three drainage complaints filed to the City of Marysville for drainage problems regarding the open channels and culverts near the site, which appear to be resolved or not considered as relevant to the design of this project. All downstream appurtenances and open channels are adequately sized to sufficiently convey flows resulting from large storm events.

3.5 TASK 5: MITIGATION OF EXISTING OR POTENTIAL DRAINAGE PROBLEMS

No drainage issues were apparent during visual investigations of the site.

Appendix 3: Resource Review

- 1. Figure 4.0 Downstream Analysis Map
- 2. Downstream Analysis Photos
- 3. FEMA Floodplain Maps
- 4. USGS Soils Map
- 5. USGS Soils Description
- 6. City of Marysville Drainage Complaints

STA NOI JOB I DRAV DESI DRAV DATE SCAL JURIS	NATURAL 9 HOLDINGS. LLC			OURCE INFORM
ATEPL/ RTH F SION: NUMB WING I GNER WING I :: 2/21/ .E: AS			Engineering	SUDKICE AGENCY SNOHOMISH COUNTY GIS PARCEL BOUNDARY
IPS 460 ER: C2 VAME: FCAV 3Y: NM 2023 SHOW ION: M	KALLICOTT PLAT		Planning	SNOHOMISH COUNTY GIS CONTOURS GENERATED FROM PARE FARTH LIDAR (SNOHOMISH COUNTY)
ASHINO 01 FEE <u>1-202 C21-20</u> ADA ARTIN			Kent 1851 Central PI S, #101	THIS DATA HAS A STATED VERTICAL ACCULRACY OF APPROXIMATELY 1 FONT
T)2-4	DOWNOINEAM IMAR	Woodinville, WA 98072 Kent,	Kent, WA 98030	
.0		T 425.806.1869 www.LDCcorp.com F 425.482.2893	F 425.482.2893	
			-	

4.0

Downstream Analysis Photographs

Western Basin Flow Path

Image 1: Facing north along Sunnyside School Road towards the southwest side of the site where flow is discharged from the site into the ditch south of the fence.

Image 2: Facing east towards the site. Flow from the site is discharged into a ditch that flows to the west towards the 83rd Ave and Sunnyside School Road intersection.

Image 3: Facing north at the intersection of 83rd Ave and Sunnyside School Road near the quarter-mile buffer. Runoff from the project site's western basin flows to the west from Sunnyside School Road and continues west/southwest (left on picture) to King Creek. Flows continue along King Creek past the quarter-mile boundary of analysis and flows into Ebey Slough, which eventually discharges into the Possession Sound.

Eastern Basin Flow Path

Image 4: Facing south near the intersection of 87th Ave and Sunnyside School Road. Flow from the eastern portion of the site will flow to the south towards the intersection and then continue southeast along Sunnyside School Road.

Image 5: Facing southeast from the northeast corner of the Sunnyside School Road and 87th Ave intersection. The project site's eastern basin runoff along and near the project frontage flows south along 87th Ave NE and discharges into the swale along the north side of Sunnyside School Road at the intersection of Sunnyside School Road and 87th Ave. Runoff continues southeast along the Sunnyside School Road past the quarter-mile boundary of analysis until discharging into the unnamed stream tributary to Steven's Creek.

Image 6: Facing southeast at the quarter-mile boundary of analysis along the northside of Sunnyside School Road. The swale continues past the quarter-mile boundary for the downstream analysis. Per Snohomish County GIS, the swale discharges into an unnamed creek tributary to Stevens Creek.

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance T30N R5E S36 17.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD **Coastal Transect** City of Marysville Base Flood Elevation Line (BFE) 530168 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** ----OTHER **Profile Baseline** 53061C0736F FEATURES Hydrographic Feature eff. 6/19/2020 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/12/2021 at 1:01 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. T29N R5E S1 This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 122°6'35"W 48°2'5"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2.000 n

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

USDA Natural Resources

Conservation Service

MAP LEGEND	MAP LEGEND	MAP INFORMATION
ast (AOI) Spoil Area ast (AOI) Stony Spot ast (AOI) Wery Stony Spot ast (AOI) Wery Stony Spot ast (AOI) Wery Stony Spot ast (AOI) Merice ast (AOI) Mer	Interest (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Soil Map Unit Points Soil Map Unit Points Mater Fe Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravel Pit Gravelly Spot Landfill	MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of sci line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detail scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as a Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: Snohomish County Area, Washington Survey Area Data: Version 23, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 26, 2018—C 16, 2018 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
72	Tokul gravelly medial loam, 0 to 8 percent slopes	4.2	100.0%
Totals for Area of Interest		4.2	100.0%

Work Order#:5816	Location:48.03558549714815,-122.11289635026496	Status:Archive Priority:Normal Created By:Jake Wetzel On 10/22/2020 11:56:50 AM
Assigned To:Jake Wetzel	Account#:	Department: Streets
	Туре:СМ	Project:
	Related WR#:1251	Related INS#:0
Start Date:10/22/2020	Start Time:	Completed Date:
Completed Time:	Scheduled:No	Stand By:No
	WO Billable:No	
Assets:		Instruction: Grind 2' of shoulder. Compact base and stabilize and repave
Activity: STREETS - SHOL	JLDER RESTORATION/GRADING	
Service Address: 8805 E. St	unnyside School Road	
Loc. Address:		
Work Performed: Description: Shoulder Failure	into adjacent ditch	

Sub-Modules:

Timesheet:

No Data

FollowUp:

No Data Waste:

No Data

Facility:

No Data

Attachment:

No Data

Equipment:

No Data

Rental:

No Data

Parts Used details:

No Data

Related Child Inspection: No Data

Duplicate: No Data

Work Order#:6085	Location:48.03522,-122.11314	Status:Archive Priority:Normal Created By:Randy Schoolcraft On 12/22/2020 7:31:02 AM
Assigned To:Randy Schoolcraft	Account#:	Department: Storm/Sewer
	Type:CM	Project:
	Related WR#:0	Related INS#:0
Start Date:12/21/2020	Start Time:	Completed Date:02/12/2021
Completed Time:	Scheduled:No	Stand By:No
	WO Billable:No	
		Instruction:
Assets:		
Activity: STORM/SEWER -	- FLOODING RESPONSE	
Service Address: 8805 east	Sunnyside School Road.	
Loc. Address:		
Work Performed:		
Description: flooding of ditch	due to heavy rains	

Sub-Modules:

Timesheet:

Employee	Hour Type	Рау Туре	Work Hours	Date	Mileage	Created By
Randy Schoolcraft	STORM DRAINAGE - 40145040	COMPENSATION TIME EARNED - 1.5	0.50	12/21/2020 12:00:00 AM	0.00	Randy Schoolcraft on 12/22/2020

Notes :

FollowUp:

No Data Waste:

No Data

Facility:

No Data

Attachment:

No Data

Equipment:

No Data

Rental:

No Data

Parts Used details:

No Data

Related Child Inspection: No Data

Duplicate: No Data

Work Order#:10082	Location:48.03323074053586,-122.11266928450794	Status:Completed Priority:Normal Created By:Jessie Balbiani On 05/31/2022 3:53:17 PM			
Assigned To:Austin Akau	Account#:	Department: Storm/Sewer			
	Туре:СМ	Project:			
	Related WR#:2310	Related INS#:0			
Start Date:05/31/2022	Start Time:	Completed Date:06/03/2022			
Completed Time:	Scheduled:No	Stand By:No			
	WO Billable:No				
		Instruction:			
Assets:					
Activity: STORM/SEWER - CULVERT/DITCH MAINTENANCE					
Service Address: 4116 DENSMORE RD					
Loc. Address: 4116 Densmore Rd, Marysville, WA, 98270, USA					
Work Performed: Cleared culvert of dirt and other debris					
Description: Driveway culvert is blocked, standing water in ditch.					

Sub-Modules:

Timesheet:

Employee	Hour Type	Рау Туре	Work Hours	Date	Mileage	Created By
Austin Akau	STORM DRAINAGE - 40145040	REGULAR - 1	2.00	06/03/2022 12:00:00 AM	0.00	Austin Akau on 06/03/2022

Notes :

FollowUp:

No Data **Waste:**

No Data

Facility:

No Data

Attachment:

No Data

Equipment:

No Data

Rental:

No Data

Parts Used details:

No Data

Related Child Inspection: No Data

Duplicate: No Data

SECTION 4: DETENTION AND WATER QUALITY FACILITY ANALYSIS AND DESIGN

4.1 PREDEVELOPED AREAS

The project is divided into two drainage basins with different flow paths, labeled as the East and West Basins. The two basins have been modeled in WWHM as the following in the predeveloped condition:

Predeveloped East Basin	Area
Forest, Flat	1.53 AC
Forest, Mod	0.23 AC
Total	1.76 AC

Table 4.1.1 – Predeveloped East Basin Land Cover Areas

Table 4.1.2 – Predeveloped West Basin Land Cover Areas

Predeveloped West Basin	Area
Forest, Flat	1.06 AC
Forest, Mod	1.267 AC
Forest, Steep	0.33 AC
Total	2.657 AC

4.2 DEVELOPED AREAS

Project development consists of impervious surfaces associated with the 28 single-family residential lots, two access points into the site from the northern property and 87th Ave, tract areas, and associated utilities. Lots were assumed to have 2,*500* sf of impervious areas for modeling purposes. Frontage improvements will take place within the 87th Ave right-of-way (ROW) and developed runoff from the frontage improvements will be included as a portion of the tributary areas for the East Basin detention vault. The project will produce 2.707 acres of new and replaced impervious surfaces, 1.10 acres being PGHS.

Pervious Land Cover

Pervious land cover in each developed basin has been modeled as pasture. In Section 7.1 of the Low Impact Development Technical Guidance Manual for Puget Sound (LID Manual), referenced in Volume V, V-11, BMP T5.13 of the 2019 SWMMWW, it is prescribed that if landscaped areas are underlain with BMP T5.13 soils, the area may be modeled as pasture. These landscaped areas

will be underlain with BMP T5.13 soil mixtures in the developed condition and thus have been modeled as pasture land cover in WWHM.

In the developed condition, the East and West Basins have been modeled in WWHM as the following:

Developed East Basin	Area
Pasture, Flat	0.59 AC
Pasture, Mod	0.10 AC
Roads, Flat	0.44 AC
Rooftops, Flat	0.63 AC
Total	1.76 AC

Table 4.2.1 – Developed East Basin Land Cover Areas

Table 4.2.2 – Developed West Basin Land Cover Areas

Developed West Basin	Area
Pasture, Flat	1.02 AC
Roads, Flat	0.296 AC
Roads, Mod	0.35 AC
Rooftops, Flat	0.977 AC
Driveways, Flat	0.014 AC
Total	2.657 AC

4.3 DETENTION

The project proposes two detention vaults (denoted as the East and West Vaults) to detain and mitigate flow from the developed surface runoff produced by each respective basin. The proposed facilities were designed with the following flow control evaluation parameters from the 2019 SWMMWW:

"Flow duration is computed by counting the number of flow values that exceed a specified flow level. The specified flow levels used by WWHM in the flow duration analysis are listed below.

- 1. 50% of the 2-year predevelopment peak flow.
- 2. 100% of the 2-year predevelopment peak flow.
- *3. 100% of the 50-year predevelopment peak flow.*

There are three criteria by which flow duration values are compared:

1. If the post development flow duration values exceed any of the predevelopment flow levels between 50% and 100% of the 2-year predevelopment peak flow values (100% Threshold) then the flow duration requirement has not been met. 2. If the post development flow duration values exceed any of the predevelopment flow levels between 100% of the 2-year and 100% of the 50-year predevelopment peak flow values more than 10 percent of the time (110 Percent Threshold) then the flow duration requirement has not been met.

3. If more than 50 percent of the flow duration levels exceed the 100 percent threshold then the flow duration requirement has not been met."

A summary of the modeled and provided dimensions, elevations, peak flows, and water surface elevations for the two detention vaults can be found below. See Appendix 4 for WWHM output and volume calculations.

East Detention Vault				
Modeled/Provided Area:	3,600 SF			
Modeled Internal Dimensions:	36' x 100'			
Modeled/Provided Live Storage Volume:	25,200 CF			
Live Storage Elevation:	353.50			
Riser Height:	7′			
Riser Diameter:	12″			
Riser Type:	Flat			
Orifice 1 Diameter:	0.8125 in			
Orifice 1 Height:	0 ft			
Orifice 2 Diameter:	1.375 in			
Orifice 2 Height:	3.75 ft			
Orifice 3 Diameter:	0.78125 in			
Orifice 3 Height:	5.25 ft			
Top of Riser Elevation:	360.50			

Table 4.3.1 – East Detention Vault: Detentior	Details Summary
	Decails Summary

Storm Event	Predeveloped Rate (cfs)	Unmitigated Rate (cfs)	Mitigated Rates (cfs)	Water Surface Elevation (ft)
2-Year	0.0599	0.5902	0.0357	357.24
10-Year	0.1176	0.9802	0.0694	357.66
50-Year	0.1839	1.4137	0.1135	358.91
100-Year	0.2170	1.6271	0.1375	359.59

West Detention Vault				
Modeled/Provided Area:	5,208 SF			
Modeled Internal Dimensions:	14' x 372'			
Modeled/Provided Live Storage Volume:	36,456 CF			
Live Storage Elevation:	341.90			
Riser Height:	7′			
Riser Diameter:	18″			
Riser Type:	Flat			
Orifice 1 Diameter:	1.0625 in			
Orifice 1 Height:	0 ft			
Orifice 2 Diameter:	1.50 in			
Orifice 2 Height:	4.00 ft			
Orifice 3 Diameter:	1.25 in			
Orifice 3 Height:	4.80 ft			
Top of Riser Elevation:	348.90			

Table 4.3.3 – West Detention Vault: Detention Details Summary

Table 4.3.4 – West Detention Vault: Flow Rates and Water Surface Elevation by Storm Event

Storm Event	Predeveloped Rate (cfs)	Unmitigated Rate (cfs)	Mitigated Rates (cfs)	Water Surface Elevation (ft)
2-Year	0.1001	0.9368	0.0553	345.22
10-Year	0.2034	1.5353	0.0992	346.24
50-Year	0.3254	2.1722	0.1546	346.99
100-Year	0.3872	2.4780	0.1840	347.45

4.4 WATER QUALITY

This project proposes 47,916 sf of PGHS, which exceeds the 5,000-sf threshold for water quality set in the 2019 SWMMWW. Therefore, this project will provide water quality treatment to all runoff from PGHS surfaces by utilizing a media filter drain downstream of the east detention vault and upstream of the west detention vault. A summary of design criteria is provided below:

East Detention Vault BayF	ilter 522
Tributary Area	1.76 AC
Tributary PGIS Area	0.44 AC
Water Quality Flow Rate (2 yr mitigated peak)	0.0357 cfs
Number of Cartridges	1
Cartridge Height	22″
Internal Drop	1.67′
Peak Flow Rate	0.05 cfs
Peak Flow Storm Event	100-year

Table 4.3.5 – East Detention Vault: BayFilter Design Summary

Table 4.3.6 – West Detention Vault: BayFilter Design Summary

East Detention Vault BayFilter 545				
Tributary Area	2.657 AC			
Tributary PGIS Area	0.66 AC			
Water Quality Flow Rate (2 yr mitigated peak)	0.3089 cfs			
Number of Cartridges	4			
Cartridge Height	36″			
Internal Drop	2.83′			
Peak Flow Rate	0.10 cfs			
Peak Flow Storm Event	100-year			

The east detention BayFilter 48" Manhole structure is located downstream of the associated vault and will therefore need to meet the mitigated 2-year release rate of 0.0357 cfs for water quality treatment. The west detention BayFilter 84" Manhole structure is located upstream of the associated vault, and will therefore need to meet the developed, predetention (or unmitigated) water quality flow rate of 0.3089 cfs adjusted for 15 minutes. Detailed WWHM output is provided in Appendix 4.

4.5 LOW IMPACT DEVELOPMENT

The low impact development (LID) standards for on-site stormwater management from Volume 1, section 3.4.5 in the 2019 SWMMWW, were considered for feasibility in the design of this project. The project is required to comply with Minimum Requirement #5 and will comply by applying achievable BMPs from List #2 as listed below:

Lawn and Landscaped Areas:

1. **BMP T5.13 Post-Construction Soil Quality and Depth**: This BMP will be applied to disturbed pervious surfaces and in accordance with BMP requirements.

Roofs:

- 1. **BMP T5.30 Full Dispersion:** Due to spatial constraints for a natural vegetated flow path, full dispersion is not feasible for the project.
- 2. BMP T5.10A Downspout Full Infiltration: BMP is infeasible for the site as site soils do not allow for infiltration due to less 36" in depth to restrictive soil layer. Infiltration on the western basin is also infeasible due to the large amount of fill that would be required for soils suitable for infiltration and infiltrating under the resulting perimeter walls is not practical.
- 3. **BMP T5.10B Downspout Dispersion Systems:** Downspout dispersion is infeasible for the site due to spatial constraints for vegetated flow path.
- 4. **BMP T5.10C Perforated Stub-out Connections:** This BMP is feasible and will be applied to the project.
- 5. **BMP 7.30 Bioretention:** Sufficient area and soils for infiltration for bioretention are not available onsite. This BMP is infeasible.

Other Hard Surfaces:

- 1. **BMP T5.30 Full Dispersion:** Sufficient flow paths and native retention are not available due to site layout. This BMP is infeasible.
- 2. **BMP T5.15 Permeable Pavement**: BMP is infeasible for the site as site soils do not allow for infiltration.
- 3. **BMP T5.12 Sheet Flow Dispersion:** Sufficient flow paths and native retention are not available due to site layout. This BMP is infeasible.

Appendix 4: Stormwater Management

- 1. Figure 5.0: Predeveloped Hydrology Map
- 2. Figure 6.0: Developed Hydrology Map
- 3. BayFilter Details
- 4. WWHM East Detention Vault Output
- 5. WWHM East Detention Vault Unmitigated Output
- 6. WWHM West Detention Vault Output
- 7. WWHM West Detention Vault Unmitigated Output

JC 탄 번 번 50 JJ					SOUF	SOURCE INFORMATION
ESIGI RAWI ATE: CALE JRISE		NAI UKAL Y HULDINGS, LLU	Surveying	Surveying	SOURCE AGENCY	DESCRIPTION
JMB NG NER NG 7/12 : AS DICT				Engineering	SNOHOMISH COUNTY GIS PARCEL BOUNDARY	PARCEL BOUNDARY
ER: C2 NAME :: FCAV BY: FC /2022 SHOV ION: N	B HARI ANE W	KALLICOTT PLAT	しし	Planning	SNOHOMISH COUNTY GIS	SNOHOMISH COUNTY GIS CONTOURS GENERATED FROM BABE EARTH I TAAP (SNOHOMISH COUNTY)
/AD/ ;AVA VN			Woodinville	Kent		THIS DATA HAS A STATED VERTICAL
A .DA	HING	REDEVELOPED HYDROLOGY MAP	20210 142nd Avenue NE 18 Woodinville WA 98072	1851 Central PI S, #101 Kent WA 98030		ACCURACY OF APPROXIMATELY 1 FOOT.
	том			E 42E 480 2003		
)	1		1 +23.000.1003 WWW.EDCCOV	1 +23.402.2000		
•	,	•				

5.0

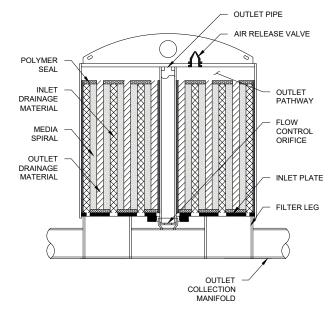
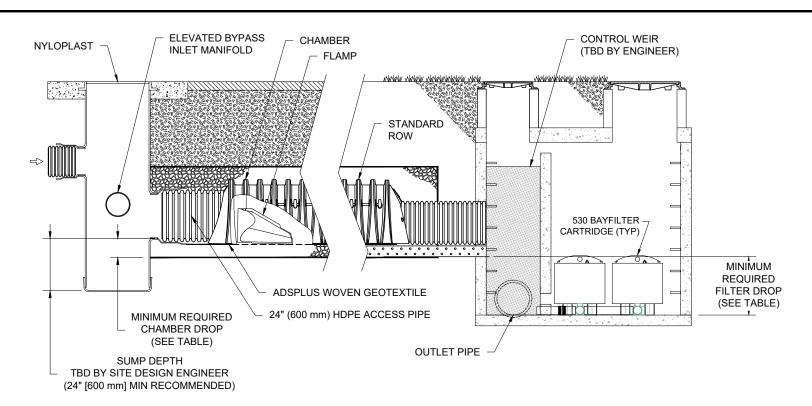

	NATURAL 9 HOLDINGS, LLC	Surveying	Surveying	SOUF SOURCE AGENCY	SOURCE INFORMATION
IMBER: NG NAM NER: FC NG BY:			Engineering Planning	SNOHOMISH COUNTY GIS PARCEL BOUNDARY SNOHOMISH COUNTY GIS CONTOURS GENERA	snohomish county gis parcel boundary snohomish county gis contours generated from
C21-2 ME: C2 CAVAD	KALLICULI PLAI	Woodinville	Kant		BARE EARTH LEDAR (SNOHOMISH COUNTY).
202 21-202 A	DEVELOPED HYDROLOGY MAP	20210 142nd Avenue NE Woodinville. WA 98072	1851 Central PI S, #101 Kent. WA 98030		ACCURACY OF APPROXIMATELY 1 FOOT.
		T 475 806 1869 WWW 10 COM COM E 475 487 7893	TT E 475 487 2892		
_					

FIGURE:

6.0

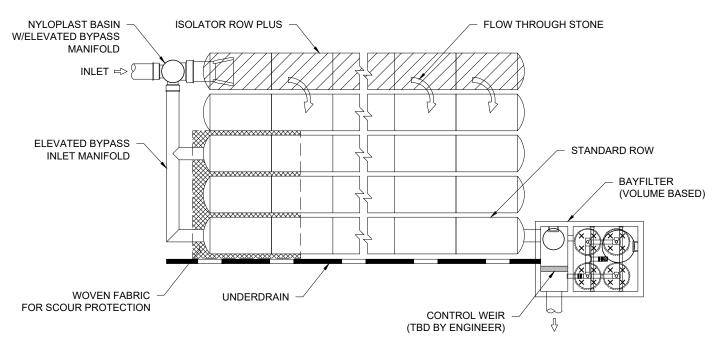
BAYFILTER T	REATMENT FLOW
FILTER MODEL	GPM (L/MIN)
522	22.5 (85.1)
530	30.0 (113.6)
545	45.0 (170.3)


BAYFILTER TR	REATMENT VOLUME
FILTER MODEL	FT ³ (m ³)
522	1,250 (35.4)
530	2,500 (70.8)
545	2,500 (70.8)

FILTER CARTRIDGE SECTION

	ISOLATOR ROW P	LUS FLOW RATE	S
CHAMBER MODEL	SURFACE LOADING RATE GPM/FT² (L/S/m²)	EFFECTIVE FILTRATION TREATMENT AREA FT ² (m ²)	MTFR CFS (L/S)*
SC-160	4.13 (2.8)	11.45 (1.064)	0.11 (2.983)
SC-310	4.13 (2.8)	17.7 (1.644)	0.16 (4.612)
SC-740	4.13 (2.8)	27.8 (2.583)	0.26 (7.244)
DC-780	4.13 (2.8)	27.8 (2.583)	0.26 (7.244)
MC-3500	4.13 (2.8)	42.9 (3.986)	0.40 (11.178)
MC-4500	4.13 (2.8)	30.1 (2.796)	0.28 (7.843)
MC-7200	4.13 (2.8)	50.0 (4.645)	0.46 (13.028)

* PER CHAMBER LOADING RATES BASED ON NJCAT VERIFICATION TESTING OF THE STORMTECH SC-740 ISOLATOR ROW PLUS IN ACCORDANCE WITH NJDEP LABORATORY PROTOCOL TO ACCESS TOTAL SUSPENDED SOLIDS REMOVAL BY FILTRATION MANUFACTURED TREATMENT DEVICES, 2013.



ISOLATOR ROW PLUS & BAYFILTER CROSS SECTION/PROFILE

NTS

	CHAMBER MODEL	160	310	740	780	3500	4500 / 7200
CHAMBER INLE	T TO OUTLET DROP [IN (mm)]	5 (126)	6.9 (175)	6.1 (155)	9.1 (230)	11.1 (281)	11.3 (286)
FILTER MODEL	FILTER DROP [IN (mm)]		TO	TAL DROP RE	QUIRED [IN (m	im)]	
522	20 (508)	25 (635)	26.9 (683)	26.1 (663)	29.1 (739)	31.1 (790)	31.3 (795)
530	32 (813)	37 (940)	38.9 (988)	38.1 (968)	41.1 (1044)	43.1 (1095)	43.3 (1100)
545	34 (864)	39 (991)	40.9 (1039)	40.1 (1019)	43.1 (1095)	45.1 (1146)	45.3 (1151)

NOTE: IF THE DROP NOTED ABOVE CANNOT BE MET PLEASE CONTACT ADS ENGINEERING SERVICES AT 888-529-8188 FOR ASSISTANCE. THERE ARE ADVANCED DESIGN TECHNIQUES THAT ACCOMMODATE SMALLER DROPS.

ISOLATOR ROW PLUS & BAYFILTER SCHEMATIC

NTS

KEY BENEFITS OF BAYFILTER REMOVES GREATER THAN 80% TSS ENHANCED MEDIA IS CAPABLE OF REMOVING 65% OF TOTAL PHOSPHOROUS LOAD PREMIUM WATER QUALITY SYSTEM OFFERED BY ADS SYSTEMS ARE FULLY CUSTOMIZABLE CAN BE INSTALLED IN STANDARD MANHOLES OR PRECAST/CAST IN PLACE VAULTS FOR LARGER PROJECTS CAN BE DESIGNED FOR WATER QUALITY FLOW RATES OR WATER QUALITY VOLUMES LARGE FILTER SURFACE AREA DUE TO COILED FILTER MEDIA DESIGN CAPABLE OF HANDLING BETWEEN 150 TO 300 LBS OF SEDIMENT GREATLY REDUCING MAINTENANCE CYCLES

BAYFILTER CONFIGURATOR

https://bayfilterconfigurator.ads-pipe.com/

BAYFILTER SEDIMENT CAPTURE CAPACITY*

FILTER MODEL	LBS (kg)
522	131 (59)
530	262 (119)
545	262 (119)

* BASED ON NJCAT TESTING PROTOCOL.

KEY BENEFITS OF A ISOLATOR PLUS & BAYFILTER DESIGN

ENHANCED SEDIMENT REMOVAL BY COMBINING TWO INDUSTRY PROVEN DEVICES UPSTREAM ISOLATOR ROW PLUS SIGNIFICANTLY REDUCES BAYFILTER MAINTENANCE CYCLES EASY TO INSTALL AND CONFIGURE TO SPECIFIC SITE CONSTRAINTS ONLINE DESIGN TOOLS ALLOW DESIGNERS TO EASILY CREATE LAYOUTS AND DETAILS

KEY BENEFITS OF STORMTECH

CHAMBERS

- LARGE FAMILY OF CHAMBERS TO FIT YOUR SITE
- EASILY CONFIGURABLE FOR IRREGULAR SHAPED BEDS
- MEETS PRODUCT REQUIREMENTS OF ASTM F2418 AND ASTM F2922 AND DESIGN
- **REQUIREMENTS OF ASTM F2787**
- EXCEED AASHTO LRFD DESIGN
- SPECIFICATIONS FOR HS-20 LIVE LOADS & DEEP BURIAL EARTH LOADS
- PATENTED ISOLATOR ROW PLUS FOR LESS FREQUENT MAINTENANCE, WATER QUALITY
- AND LONG-TERM PERFORMANCE
- THIRD PARTY VERIFIED PERFORMANCE FIELD ENGINEERS AND INTERNAL ENGINEERING SERVICES DEPARTMENT TO ASSIST
- ENGINEERING WITH LAYOUTS

STORMTECH DESIGN TOOL

https://designtool.ads-pipe.com/

								ET A II
1	4640 TRUEMAN BLVD						בר	
	HILLIARD, OH 43026					ISOLATOR ROW PLUS [®] & BAYFILTER	LUS® & BAYF	ILTER®
s⊦ C								
iee DF						DATE: 2/10/22		_
T		Advanced Urainage Systems, Inc.						2
			DATE	DATE DRWN CHKD	DESCRIPTION	PROJECT #: N/A	CHECKED: KMS	1S
1	THS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THAT THE PRODUCT(S) DEPICTED AND ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AI	EER OR OTHEF ALL APPLICABL	R PROJECT REPF E LAWS, REGUL/	RESENTATIVE. THE SITE DESIGN ENGINEER SHA ATIONS, AND PROJECT REQUIREMENTS.	ALL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS	⁻ НЕ ИLTIMATE

WWHM2012 PROJECT REPORT

```
Project Name: East Basin detention sizing
Site Name: Kallicott
Site Address:
City :
Report Date: 6/28/2022
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2021/08/18
Version : 4.2.18
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Undeveloped East Basin Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	1.53
C, Forest, Mod	.23
Pervious Total	1.76
Impervious Land Use	acre
Impervious Total	0
Basin Total	

Element Flows To: Surface Interflow

AT.

Groundwater

MITIGATED LAND USE

Name : Dev East Basin Bypass: No

GroundWater: No

<u>Pervious Land Use</u> C, Pasture, Flat C, Pasture, Mod	<u>acre</u> .59 .1
Pervious Total	0.69
Impervious Land Use ROADS FLAT ROOF TOPS FLAT	<u>acre</u> 0.44 0.63
Impervious Total	1.07
Basin Total	1.76

Element Flows To: Surface Interflow Groundwater Vault 1 Vault 1

Name : Vault 1 Width : 36 ft. Length : 100 ft. 8 ft. Depth: Discharge Structure Riser Height: 7 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 0.8125 in. Elevation: 0 ft. Orifice 2 Diameter: 1.375 in. Elevation: 3.75 ft. Orifice 3 Diameter: 0.78125 in. Elevation: 5.25 ft.

Element Flows To: Outlet 1 Outlet 2

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt (cfs)	
0.0000	0.082	0.000	0.000	0.000	
0.0889	0.082	0.007	0.005	0.000	
0.1778	0.082	0.014	0.007	0.000	
0.2667	0.082	0.022	0.009	0.000	

Vault Hydraulic Table

0.082	0.014	0.007	0.000
0.082	0.022	0.009	0.000
0.082	0.029	0.010	0.000
0.082	0.036	0.011	0.000
0.082	0.044	0.013	0.000
0.082	0.051	0.014	0.000
0.082	0.058	0.015	0.000
0.082	0.066	0.016	0.000
0.082	0.073	0.016	0.000
0.082	0.080	0.017	0.000
0.082	0.088	0.018	0.000
	0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082	0.0820.0220.0820.0290.0820.0360.0820.0440.0820.0510.0820.0580.0820.0660.0820.0730.0820.080	0.0820.0220.0090.0820.0290.0100.0820.0360.0110.0820.0440.0130.0820.0510.0140.0820.0580.0150.0820.0660.0160.0820.0730.0160.0820.0800.017

1 1	0 000	0 005	0 010	
1.1556	0.082	0.095	0.019	0.000
1.2444	0.082	0.102	0.020	0.000
1.3333	0.082	0.110	0.020	0.000
1.4222	0.082	0.117	0.021	0.000
1.5111	0.082	0.124	0.022	0.000
1.6000	0.082	0.132	0.022	0.000
1.6889	0.082	0.139	0.023	0.000
1.7778	0.082	0.146	0.023	0.000
1.8667	0.082	0.154	0.024	0.000
1.9556	0.082	0.161	0.025	0.000
2.0444	0.082	0.169	0.025	0.000
2.1333	0.082	0.176	0.026	0.000
2.2222	0.082	0.183	0.026	0.000
2.3111	0.082	0.191	0.027	0.000
2.4000	0.082	0.198	0.027	0.000
2.4889	0.082	0.205	0.028	0.000
2.5778	0.082	0.213	0.028	0.000
2.6667		0.220		0.000
	0.082		0.029	
2.7556	0.082	0.227	0.029	0.000
2.8444	0.082	0.235	0.030	0.000
2.9333	0.082	0.242	0.030	0.000
3.0222	0.082	0.249	0.031	0.000
3.1111	0.082	0.257	0.031	0.000
3.2000	0.082	0.264	0.032	0.000
3.2889	0.082	0.271	0.032	0.000
3.3778	0.082	0.279	0.032	0.000
3.4667	0.082	0.286	0.033	0.000
3.5556	0.082	0.293	0.033	0.000
3.6444	0.082	0.301	0.034	0.000
3.7333	0.082	0.308	0.034	0.000
3.8222	0.082	0.315	0.048	0.000
3.9111	0.082	0.323	0.056	0.000
4.0000	0.082	0.330	0.061	0.000
4.0889	0.082	0.337	0.066	0.000
4.1778	0.082	0.345	0.070	0.000
4.2667	0.082	0.352	0.073	0.000
4.3556	0.082	0.360	0.077	0.000
4.4444	0.082	0.367	0.080	0.000
4.5333	0.082	0.374	0.083	0.000
4.6222	0.082	0.382	0.086	0.000
4.7111	0.082	0.389	0.089	0.000
4.8000	0.082	0.396	0.091	0.000
4.8889	0.082	0.404	0.094	0.000
4.9778	0.082	0.411	0.096	0.000
5.0667	0.082	0.418	0.099	0.000
5.1556	0.082	0.426	0.101	0.000
5.2444	0.082	0.433	0.103	0.000
5.3333	0.082	0.440	0.110	0.000
5.4222	0.082	0.448	0.114	0.000
5.5111	0.082	0.455	0.118	0.000
5.6000	0.082	0.462	0.122	0.000
5.6889	0.082	0.470	0.125	0.000
5.7778	0.082	0.477	0.128	0.000
5.8667	0.082	0.484	0.131	0.000
5.9556	0.082	0.492	0.133	0.000
6.0444	0.082	0.499	0.136	0.000
6.1333	0.082	0.506	0.139	0.000

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.76 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.69 Total Impervious Area:1.07

Flow Frequency Return Periods for Predeveloped. POC #1 Flow(cfs) Return Period 2 year 0.059877 5 year 0.092391 10 year 0.117577 25 year 0.153735 50 year 0.183938 100 year 0.217046 Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.035669 0.054058 5 year 10 year 0.069356

25 year	0.092768
50 year	0.113534
100 year	0.137477

Stream	Protection Duration		
Annual	Peaks for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.061	0.029	
1950	0.062	0.032	
1951	0.055	0.028	
1952	0.044	0.026	
1953	0.036	0.025	
1954	0.202	0.031	
1955	0.076	0.058	
1956	0.067	0.062	
1957	0.084	0.055	
1958	0.063	0.029	
1959	0.060	0.032	
1960	0.056	0.033	
1961	0.108	0.046	
1962	0.053	0.028	
1963	0.088	0.028	
1964	0.064	0.024	
1965	0.051	0.033	
1966	0.030	0.027	
1967	0.061	0.028	
1968	0.074	0.034	
1969	0.188	0.029	
1970	0.043	0.028	
1971	0.069	0.070	
1972	0.050	0.030	
1973	0.047	0.031	
1974	0.105	0.031	
1975	0.041	0.026	
1976	0.044	0.030	
1977	0.036	0.027	
1978	0.043	0.026	
1979	0.122	0.029	
1980	0.057	0.025	
1981	0.043	0.027	
1982	0.056	0.050	
1983	0.099	0.028	
1984	0.058	0.078	
1985	0.071	0.062	
1986	0.166	0.125	
1987	0.079	0.094	
1988	0.041	0.034	
1989	0.043	0.024	
1990	0.055	0.045	
1991	0.057	0.033	
1992	0.043	0.034	
1992	0.037	0.024	
1993	0.039	0.024	
1995	0.058	0.067	
1996	0.100	0.062	
1997	0.199	0.158	

1998	0.036	0.027
1999	0.047	0.033
2000	0.035	0.069
2001	0.014	0.021
2002	0.054	0.033
2003	0.042	0.031
2004	0.071	0.071
2005	0.049	0.032
2006	0.136	0.052
2007	0.107	0.033
2008	0.146	0.126
2009	0.044	0.031

	Protection Durat	
Ranked Rank	Annual Peaks for Predeveloped	Predeveloped and Mitigated. POC Mitigated
1	0.2016	0.1576
2	0.1985	0.1257
3	0.1882	0.1248
4	0.1663	0.0942
5	0.1456	0.0783
6	0.1362	0.0712
7	0.1221	0.0702
8	0.1082	0.0688
9	0.1066	0.0671
10	0.1053	0.0622
11	0.0999	0.0619
12	0.0991	0.0616
13	0.0880	0.0579
14	0.0842	0.0551
15	0.0788	0.0520
16	0.0764	0.0497
17	0.0741	0.0460
18	0.0712	0.0452
19	0.0707	0.0345
20	0.0688	0.0344
21	0.0673	0.0336
22	0.0643	0.0333
23	0.0630	0.0331
24	0.0621	0.0329
25	0.0610	0.0328
26	0.0607	0.0328
27	0.0602	0.0327
28	0.0580	0.0322
29	0.0577	0.0319
30	0.0572	0.0319
31	0.0568	0.0317
32	0.0563	0.0313
33	0.0558	0.0313
34	0.0551	0.0311
35	0.0551	0.0310
36	0.0537	0.0308
37	0.0532	0.0302
38	0.0513	0.0299
39 40	0.0495	0.0293
40	0.0492	0.0292

#1

41	0.0471	0.0291
42	0.0471	0.0286
43	0.0444	0.0278
44	0.0438	0.0278
45	0.0437	0.0277
46	0.0434	0.0277
47	0.0433	0.0276
48	0.0428	0.0275
49	0.0428	0.0267
50	0.0425	0.0267
51	0.0421	0.0267
52	0.0414	0.0265
53	0.0408	0.0260
54	0.0394	0.0257
55	0.0366	0.0255
56	0.0364	0.0253
57	0.0361	0.0252
58	0.0360	0.0245
59	0.0354	0.0244
60	0.0301	0.0236
61	0.0142	0.0215

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pero	centage	Pass/Fail
0.0299	18931	16288	86	Pass
0.0315	16307	10192	62	Pass
0.0330	14070	6038	42	Pass
0.0346	12089	2733	22	Pass
0.0362	10327	2562	24	Pass
0.0377	8906	2453	27	Pass
0.0393	7683	2359	30	Pass
0.0408	6631	2265	34	Pass
0.0424	5700	2188	38	Pass
0.0439	4958	2113	42	Pass
0.0455	4344	2040	46	Pass
0.0470	3760	1981	52	Pass
0.0486	3281	1905	58	Pass
0.0502	2879	1808	62	Pass
0.0517	2554	1693	66	Pass
0.0533	2239	1597	71	Pass
0.0548	1961	1513	77	Pass
0.0564	1709	1452	84	Pass
0.0579	1533	1359	88	Pass
0.0595	1392	1240	89	Pass
0.0610	1267	1113	87	Pass
0.0626	1166	1046	89	Pass
0.0642	1078	1000	92	Pass
0.0657	1013	951	93	Pass
0.0673	952	891	93	Pass
0.0688	886	838	94	Pass
0.0704	821	795	96	Pass

0 0710	772	760	0.0	Deee
0.0719	773	762	98	Pass
0.0735	724	739	102	Pass
0.0750	685	709	103	Pass
0.0766	641	680	106	Pass
0.0782	620	649	104	Pass
0.0797	599	627	104	Pass
0.0813	575	607	105	Pass
0.0828	558	589	105	Pass
0.0844	528	569	107	Pass
0.0859	503	549	109	Pass
0.0875	484	529	109	Pass
0.0890	468	509	108	Pass
0.0906	447	477	106	Pass
0.0922	430	440	102	Pass
0.0937	420	408	97	Pass
0.0953	403	387	96	Pass
0.0968	387	367	94	Pass
0.0984	376	351	93	Pass
0.0999	355	334	94	Pass
0.1015	344	320	93	Pass
0.1030	337	303	89	Pass
0.1046	326	292	89	Pass
0.1062	316	286	90	Pass
0.1077	308	279	90	Pass
0.1093	293	273	93	Pass
0.1108	284	268	94	Pass
0.1124	277	260	93	Pass
0.1139	267	252	94	Pass
0.1155	259	244	94	Pass
0.1170	243	232	95	Pass
0.1186	235	212	90	Pass
0.1202	225	196	87	Pass
0.1217	213	174	81	Pass
0.1233	203	159	78	Pass
0.1248	194	138	71	Pass
0.1240	186	125	67	Pass
0.1279	175	121	69	Pass
0.1295	166	118	09 71	
0.1295	160	115	71	Pass Pass
0.1310	151	112	74	
0.1320		97	74 66	Pass Pass
0.1342	145			
	134	83	61 62	Pass
0.1373	125	78	62	Pass
0.1388	117	74	63	Pass
0.1404	106	70	66	Pass
0.1419	94	66	70	Pass
0.1435	79	61	77	Pass
0.1450	69	57	82	Pass
0.1466	60	53	88	Pass
0.1482	57	48	84	Pass
0.1497	54	42	77	Pass
0.1513	43	38	88	Pass
0.1528	40	27	67	Pass
0.1544	38	23	60 50	Pass
0.1559	36	18	50	Pass
0.1575	33	4	12	Pass
0.1590	28	0	0	Pass

0.1606	26	0	0	Pass	
0.1622	21	0	0	Pass	
0.1637	16	0	0	Pass	
0.1653	15	0	0	Pass	
0.1668	8	0	0	Pass	
0.1684	6	0	0	Pass	
0.1699	5	0	0	Pass	
0.1715	4	0	0	Pass	
0.1730	4	0	0	Pass	
0.1746	4	0	0	Pass	
0.1762	3	0	0	Pass	
0.1777	3	0	0	Pass	
0.1793	3	0	0	Pass	
0.1808	3	0	0	Pass	
0.1824	3	0	0	Pass	
0.1839	3	0	0	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Vault 1 POC	N	235.99			N
0.00					
Total Volume Infiltrated		235.99	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Stands	ard 8				
Duration Analysis Result	= Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: East Basin prior to detention
Site Name: Kallicott
Site Address:
City :
Report Date: 2/20/2023
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2017/07/05
Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Undeveloped East Basin Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	1.53
C, Forest, Mod	.23
Pervious Total	1.76
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.76

Element	Flows	To:	
Surface			I

nterflow

Groundwater

MITIGATED LAND USE

Name : Unmitigated Dev East Basin Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Flat C, Pasture, Mod	<u>acre</u> .59 .1
Pervious Total	0.69
Impervious Land Use ROADS FLAT ROOF TOPS FLAT	<u>acre</u> 0.44 0.63
Impervious Total	1.07
Basin Total	1.76

Element Flows To: Surface I

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.76 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.69 Total Impervious Area:1.07

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.059877 5 year 0.092391 10 year 0.117577 25 year 0.153735 50 year 0.183938 0.217046 100 year Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.590214 5 year 0.812266 0.980193 10 year 25 year 1.217566

50 year	1.413655
100 year	1.62709

	Protection Duration		
Annual	Peaks for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.061	0.665	
1950	0.062	0.704	
1951	0.055	0.706	
1952	0.044	0.547	
1953	0.036	0.718	
1954	0.202	1.008	
1955	0.076	0.700	
1956	0.067	0.311	
1957	0.084	0.550	
1958	0.063	1.395	
1959	0.060	0.522	
1960	0.056	0.559	
1961	0.108	1.941	
1962	0.053	0.652	
1963	0.088	0.787	
1964	0.064	0.410	
1965	0.051	0.497	
1966	0.030	0.500	
1967	0.061	1.109	
1968	0.074	0.601	
1969	0.188	1.333	
1970	0.043	0.464	
1971	0.069	0.650	
1972	0.050	0.843	
1973	0.047	0.682	
1974	0.105	0.808	
1975	0.041	0.665	
1976	0.044	0.458	
1977	0.036	0.452	
1978	0.043	0.345	
1979	0.122	0.784	
1980	0.057	0.495	
1981	0.043	0.461	
1982	0.056	0.460	
1983	0.099	0.637	
1984	0.058	0.569	
1985	0.071	0.782	
1986	0.166	0.825	
1987	0.079	0.682	
1988	0.041	0.556	
1989	0.043	0.571	
1990	0.055	0.447	
1991	0.057	0.548	
1992	0.043	0.555	
1993	0.037	0.429	
1993	0.039	0.481	
1994	0.058	0.406	
1995	0.100	0.653	
1990	0.100	0.736	
1997	0.036	0.751	
T)) (0.000	0./01	

1999	0.047	0.342
2000	0.035	1.185
2001	0.014	0.398
2002	0.054	0.386
2003	0.042	0.530
2004	0.071	1.010
2005	0.049	0.472
2006	0.136	0.645
2007	0.107	0.626
2008	0.146	0.465
2009	0.044	0.479

		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	0.2016	1.9407
2	0.1985	1.3946
3	0.1882	1.3326
4	0.1663	1.1847
5	0.1456	1.1087
6	0.1362	1.0103
7	0.1221	1.0079
8	0.1082	0.8427
9	0.1066	0.8246
10	0.1053	0.8080
11	0.0999	0.7869
12	0.0991	0.7843
13	0.0880	0.7819
14	0.0842	0.7509
15	0.0788	0.7361
16	0.0764	0.7178
17	0.0741	0.7061
18	0.0712	0.7037
19	0.0707	0.6995
20	0.0688	0.6821
21	0.0673	0.6820
22	0.0643	0.6654
23	0.0630	0.6650
24	0.0621	0.6533
25	0.0610	0.6525
26	0.0607	0.6504
27	0.0602	0.6451
28	0.0580	0.6367
29	0.0577	0.6257
30	0.0572	0.6009
31	0.0568	0.5708
32	0.0563	0.5695
33	0.0558	0.5591
34	0.0551	0.5558
35	0.0551	0.5554
36	0.0537	0.5505
37	0.0532	0.5478
38	0.0513	0.5469
39	0.0495	0.5297
40	0.0492	0.5219
41	0.0471	0.5002

42	0.0471	0.4974
43	0.0444	0.4954
44	0.0438	0.4811
45	0.0437	0.4785
46	0.0434	0.4716
47	0.0433	0.4648
48	0.0428	0.4637
49	0.0428	0.4610
50	0.0425	0.4601
51	0.0421	0.4585
52	0.0414	0.4520
53	0.0408	0.4467
54	0.0394	0.4289
55	0.0366	0.4101
56	0.0364	0.4062
57	0.0361	0.3979
58	0.0360	0.3865
59	0.0354	0.3449
60	0.0301	0.3420
61	0.0142	0.3111

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Pe	rcentage	e Pass/Fail
0.0299	18931	16288	86	Pass
0.0315	16307	10192	62	Pass
0.0330	14070	6038	42	Pass
0.0346	12089	2733	22	Pass
0.0362	10327	2562	24	Pass
0.0377	8906	2453	27	Pass
0.0393	7683	2359	30	Pass
0.0408	6631	2265	34	Pass
0.0424	5700	2188	38	Pass
0.0439	4958	2113	42	Pass
0.0455	4344	2040	46	Pass
0.0470	3760	1981	52	Pass
0.0486	3281	1905	58	Pass
0.0502	2879	1808	62	Pass
0.0517	2554	1693	66	Pass
0.0533	2239	1597	71	Pass
0.0548	1961	1513	77	Pass
0.0564	1709	1452	84	Pass
0.0579	1533	1359	88	Pass
0.0595	1392	1240	89	Pass
0.0610	1267	1113	87	Pass
0.0626	1166	1046	89	Pass
0.0642	1078	1000	92	Pass
0.0657	1013	951	93	Pass
0.0673	952	891	93	Pass
0.0688	886	838	94	Pass
0.0704	821	795	96	Pass
0.0719	773	762	98	Pass

0.0735 0.0750 0.0766 0.0782 0.0797 0.0813 0.0828 0.0844 0.0859 0.0875 0.0890 0.0906 0.0922 0.0937 0.0953 0.0968 0.0984 0.0999 0.1015 0.1030 0.1046 0.1062 0.1077 0.1093 0.1046 0.1062 0.1077 0.1093 0.1108 0.1124 0.1139 0.1155 0.1170 0.1155 0.1170 0.1186 0.1202 0.1217 0.1233 0.1248 0.1248 0.1248 0.1248 0.1248 0.1250 0.1310 0.1326 0.1342 0.1357 0.1373	$\begin{array}{c} 724\\ 685\\ 641\\ 620\\ 599\\ 575\\ 558\\ 503\\ 484\\ 468\\ 447\\ 430\\ 403\\ 387\\ 376\\ 355\\ 347\\ 326\\ 316\\ 308\\ 293\\ 284\\ 277\\ 259\\ 243\\ 235\\ 213\\ 203\\ 194\\ 186\\ 175\\ 166\\ 151\\ 145\\ 134\\ 125\\ \end{array}$	$\begin{array}{c} 739\\ 709\\ 680\\ 649\\ 627\\ 607\\ 589\\ 569\\ 529\\ 509\\ 477\\ 440\\ 408\\ 387\\ 351\\ 334\\ 320\\ 303\\ 292\\ 286\\ 279\\ 273\\ 268\\ 260\\ 252\\ 244\\ 232\\ 212\\ 196\\ 174\\ 159\\ 138\\ 125\\ 121\\ 118\\ 115\\ 112\\ 97\\ 83\\ 78\end{array}$	102 103 106 104 105 105 107 109 108 106 102 97 96 94 93 94 93 94 93 89 89 90 90 93 94 93 94 93 94 93 94 93 94 93 94 95 90 87 81 78 71 71 67 69 71 71 74 66 61 62	Pass Pass Pass Pass Pass Pass Pass Pass
0.1248	194	138	71	Pass
0.1295	166	118	71	Pass
0.1326	151	112	74	Pass
0.1357	134	83	61	Pass
0.1388	117	74	63	Pass
0.1404 0.1419	106 94	70 66	66 70	Pass Pass
0.1435 0.1450	79 69	61 57	77 82	Pass Pass
0.1466 0.1482	60	53 48	88	Pass
0.1482	57 54	40 42	84 77	Pass Pass
0.1513	43	38	88	Pass
0.1528	40	27	67 60	Pass
0.1544 0.1559	38 36	23 18	60 50	Pass
0.1559	33	10 4	30 12	Pass Pass
0.1590	28	0	0	Pass
0.1606	26	0	0	Pass

		_	-	
0.1622	21	0	0	Pass
0.1637	16	0	0	Pass
0.1653	15	0	0	Pass
0.1668	8	0	0	Pass
0.1684	6	0	0	Pass
0.1699	5	0	0	Pass
0.1715	4	0	0	Pass
0.1730	4	0	0	Pass
0.1746	4	0	0	Pass
0.1762	3	0	0	Pass
0.1777	3	0	0	Pass
0.1793	3	0	0	Pass
0.1808	3	0	0	Pass
0.1824	3	0	0	Pass
0.1839	3	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.0685 acre-feet On-line facility target flow: 0.0376 cfs. Adjusted for 15 min: 0.0376 cfs. Off-line facility target flow: 0.0217 cfs. Adjusted for 15 min: 0.0217 cfs.

LID Report

LID Technique Used			Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated		Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	0%	No Treat. Cr	redit			
Compliance with LID Standard 8						
Duration An	alysis Result =	Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: West Basin detention sizing
Site Name: Kallicott
Site Address:
City : Marysville
Report Date: 12/29/2022
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2021/08/18
Version : 4.2.18
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Undeveloped West Basin Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	1.06
C, Forest, Mod	1.267
C, Forest, Steep	.33
Pervious Total	2.657
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.657

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : Developed West Basin Bypass: No GroundWater: No

Pervious Land UseacC, Pasture, Flat	1.02
Pervious Total	1.02
ROADS FLAT ROADS MOD ROOF TOPS FLAT	<u>re</u> 0.296 0.35 0.977 0.014
Impervious Total	0.014 1.637 2.657

Element Flows To:		
Surface	Interflow	Groundwater
Vault 1	Vault 1	

Name : Vault 1 Width : 14 ft. Length : 372 ft. Depth: 8 ft. Discharge Structure Riser Height: 7 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 1.0625 in. Elevation: 0 ft. Orifice 2 Diameter: 1.5 in. Elevation: 4 ft. Orifice 3 Diameter: 1.25 in. Elevation: 4.8 ft.

Element Flows To: Outlet 1 Outlet 2

Vault Hydraulic Table						
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)		
0.0000	0.119	0.000	0.000	0.000		
0.0889	0.119	0.010	0.009	0.000		
0.1778	0.119	0.021	0.012	0.000		
0.2667	0.119	0.031	0.015	0.000		
0.3556	0.119	0.042	0.018	0.000		
0.4444	0.119	0.053	0.020	0.000		
0.5333	0.119	0.063	0.022	0.000		
0.6222	0.119	0.074	0.024	0.000		
0.7111	0.119	0.085	0.025	0.000		
0.8000	0.119	0.095	0.027	0.000		
0.8889	0.119	0.106	0.028	0.000		

4.5333 0.119 0.542 0.109 0.000	4.71110.1190.5630.1180.0004.80000.1190.5730.1210.000	4.7111 0.119 0.563 0.118 0.000					
	4.53330.1190.5420.1090.0004.62220.1190.5520.1140.0004.71110.1190.5630.1180.0004.80000.1190.5730.1210.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1778 4.2667 4.3556	0.119 0.119 0.119	0.499 0.510 0.520	0.088 0.094 0.100	0.000 0.000 0.000

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:2.657 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.02 Total Impervious Area:1.637

Flow Frequency Return Periods for Predeveloped. POC #1 Flow(cfs) Return Period 2 year 0.100088 5 year 0.157857 0.203351 10 year 0.269513 25 year 50 year 0.325399 0.387193 100 year Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.055347

5 year	0.07952
10 year	0.099204
25 year	0.128786
50 year	0.154611
100 year	0.184009

Stream Protection Duration Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated 1949 0.106 0.048 1950 0.111 0.053 1951 0.092 0.046 1952 0.076 0.043 1953 0.063 0.042 1954 0.366 0.053 1955 0.124 0.060 1956 0.107 0.088 1957 0.061 0.141 1958 0.049 0.159 1959 0.097 0.054 1960 0.091 0.055 1961 0.226 0.057 1962 0.094 0.048 0.045 1963 0.156 1964 0.042 0.117 1965 0.080 0.054 1966 0.049 0.045 1967 0.098 0.047 0.059 1968 0.120 1969 0.337 0.048 1970 0.067 0.046 1971 0.118 0.080 1972 0.079 0.051 0.075 1973 0.051 1974 0.051 0.190 1975 0.075 0.044 1976 0.076 0.051 1977 0.058 0.045 1978 0.070 0.043 1979 0.211 0.051 1980 0.099 0.042 1981 0.069 0.046 1982 0.091 0.060 1983 0.173 0.046 0.100 1984 0.091 1985 0.118 0.060 1986 0.269 0.199 1987 0.123 0.142 1988 0.065 0.058 1989 0.076 0.039 1990 0.059 0.086 1991 0.055 0.089 1992 0.067 0.056 1993 0.063 0.042 1994 0.062 0.053

1995

0.091

0.089

1996 1997 1998 1999	0.169 0.328 0.058 0.074	0.071 0.274 0.044 0.055
2000	0.060	0.090
2001 2002	0.023 0.084	0.037 0.056
2003 2004	0.066 0.111	0.052
2005	0.078	0.053
2007	0.183	0.054
2008 2009	0.232 0.069	0.203 0.051

	Protection Durat	
		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1 2	0.3659 0.3373	0.2741 0.2031
2 3	0.3275	0.1988
4	0.2691	0.1423
5	0.2386	0.1004
6	0.2321	0.0976
7	0.2260	0.0905
8	0.2114	0.0888
9	0.1896	0.0878
10	0.1830	0.0796
11	0.1729	0.0708
12	0.1686	0.0609
13	0.1591	0.0607
14	0.1562	0.0603
15	0.1414	0.0602
16	0.1236	0.0598
17	0.1235	0.0589
18	0.1201	0.0588
19	0.1181	0.0578
20	0.1180	0.0572
21	0.1168	0.0558
22	0.1109	0.0555
23	0.1107	0.0552
24	0.1073	0.0550
25	0.1058	0.0549
26	0.0991	0.0542
27	0.0985	0.0542
28	0.0971	0.0541
29	0.0938	0.0534
30	0.0923	0.0532
31	0.0909	0.0528
32	0.0908	0.0526
33	0.0908	0.0519
34	0.0906	0.0510
35 26	0.0893	0.0510
36 37	0.0860 0.0845	0.0509
38	0.0845	0.0508 0.0507
20	0.0003	0.0007

39	0.0795	0.0506
40	0.0779	0.0488
41	0.0765	0.0483
42	0.0763	0.0480
43	0.0757	0.0480
44	0.0752	0.0467
45	0.0748	0.0461
46	0.0740	0.0461
47	0.0696	0.0459
48	0.0693	0.0455
49	0.0693	0.0452
50	0.0675	0.0451
51	0.0674	0.0447
52	0.0663	0.0436
53	0.0650	0.0436
54	0.0635	0.0430
55	0.0632	0.0426
56	0.0623	0.0425
57	0.0596	0.0422
58	0.0582	0.0422
59	0.0579	0.0415
60	0.0488	0.0387
61	0.0229	0.0367

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)PredevMit PercentagePass/Fail0.0500152971428193Pass

(0.0500	15297	14281	93	Pass
(0.0528	12957	9383	72	Pass
(0.0556	10919	5833	53	Pass
(0.0584	9176	3390	36	Pass
(0.0612	7738	1431	18	Pass
	0.0640	6521	1325	20	Pass
(0.0667	5491	1279	23	Pass
(0.0695	4712	1220	25	Pass
	0.0723	4060	1184	29	Pass
(0.0751	3422	1152	33	Pass
(0.0779	2928	1110	37	Pass
	0.0806	2541	1070	42	Pass
(0.0834	2235	1015	45	Pass
(0.0862	1934	939	48	Pass
(0.0890	1677	866	51	Pass
	0.0918	1490	821	55	Pass
(0.0945	1336	788	58	Pass
(0.0973	1197	741	61	Pass
(0.1001	1064	698	65	Pass
(0.1029	985	671	68	Pass
	0.1057	918	646	70	Pass
(0.1085	853	622	72	Pass
(0.1112	786	596	75	Pass
(0.1140	744	568	76	Pass
(0.1168	689	542	78	Pass

0.1196 0.1224 0.1251	642 610 586	504 465	78 76	Pass Pass
		453	77	Pass
0.1279	565	445	78	Pass
0.1307	545	438	80	Pass
0.1335	522	432	82	Pass
0.1363	490	420	85	Pass
0.1390	470	404	85	Pass
0.1418	446	388	86	Pass
0.1446	425	378	88	Pass
0.1474	402	370	92	Pass
0.1502	383	362	94	Pass
0.1530	363	353	97	Pass
0.1557	351	343	97	Pass
0.1585	336	334	99	Pass
0.1613	327	324	99	Pass
0.1641	319	316	99	Pass
0.1669	310	306	98	Pass
0.1696	301	295	98	Pass
0.1724	292	282	96	Pass
0.1752	278	270	97	Pass
0.1780	269	260	96	Pass
0.1808	257	245	95	Pass
0.1835	245	228	93	Pass
0.1863	232	211	90	Pass
0.1891	221	197	89	Pass
0.1919	212	185	87	Pass
0.1947	199	163	81	Pass
0.1975	186	149	80	Pass
0.2002	177	130	73	Pass
0.2030	167	116	69	Pass
0.2058	158	111	70	Pass
0.2086	151	107	70	Pass
0.2114	144 134	103 89	71 66	Pass
0.2141 0.2169	134 126	89 73	57	Pass
0.2109	120	68	58	Pass Pass
0.2225	100	63	63	
0.2253	85	58	68	Pass Pass
0.2233	74	54		
0.2308	60	50	72 83	Pass Pass
0.2336	51	45	88	Pass
0.2364	48	39	81	Pass
0.2392	39	28	71	Pass
0.2420	37	24	64	Pass
0.2447	35	19	54	Pass
0.2475	30	7	23	Pass
0.2503	27	7	25	Pass
0.2531	20	6	30	Pass
0.2559	16	5	31	Pass
0.2586	15	5	33	Pass
0.2614	10	5	50	Pass
0.2642	7	4	57	Pass
0.2670	6	4	66	Pass
0.2698	4	3	75	Pass
0.2726	4	2	50	Pass
0.2753	4	0	0	Pass

0.2781	4	0	0	Pass	
0.2809	4	0	0	Pass	
0.2837	4	0	0	Pass	
0.2865	4	0	0	Pass	
0.2892	3	0	0	Pass	
0.2920	3	0	0	Pass	
0.2948	3	0	0	Pass	
0.2976	3	0	0	Pass	
0.3004	3	0	0	Pass	
0.3031	3	0	0	Pass	
0.3059	3	0	0	Pass	
0.3087	3	0	0	Pass	
0.3115	3	0	0	Pass	
0.3143	3	0	0	Pass	
0.3171	3	0	0	Pass	
0.3198	3	0	0	Pass	
0.3226	3	0	0	Pass	
0.3254	3	0	0	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Qualit	y Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Vault 1 POC	N	359.63			N
0.00					
Total Volume Infiltrated		359.63	0.00	0.00	0.00
0.00 0%	No Treat. C	redit			
Compliance with LID Stan	dard 8				
Duration Analysis Result	= Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: West Basin prior to detention Site Name: Kallicott Site Address: City : Marysville Report Date: 2/20/2023 Gage : Everett Data Start : 1948/10/01 Data End : 2009/09/30 Precip Scale: 1.20 Version Date: 2017/07/05 Version : 4.2.13

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Undeveloped West Basin Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	1.06
C, Forest, Mod	1.267
C, Forest, Steep	.33
Pervious Total	2.657
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.657

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : Unmitigated Developed West Basin Bypass: No GroundWater: No

Pervious Land Use C, Pasture, Flat	<u>acre</u> 1.02
Pervious Total	1.02
Impervious Land Use	acre
ROADS FLAT	0.296
ROADS MOD	0.35
ROOF TOPS FLAT	0.977
DRIVEWAYS FLAT	0.014
Impervious Total	1.637
Basin Total	2.657

Element Flows To: Surface

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:2.657 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.02 Total Impervious Area:1.637

```
Flow Frequency Return Periods for Predeveloped. POC #1
Return Period Flow(cfs)
2 year
                      0.100088
5 year
                       0.157857
10 year
                      0.203351
25 year
                       0.269513
                       0.325399
50 year
100 year
                       0.387193
Flow Frequency Return Periods for Mitigated. POC #1
Return Period
                    Flow(cfs)
2 year
                       0.936775
5 year
                       1.281256
```

10 year	1.535277
25 year	1.887009
50 year	2.172214
100 year	2.478014

Stream Protection Duration Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	0.106	1.041
1950	0.111	1.076
1951	0.092	1.150
1952	0.076	0.875
1953	0.063	1.112
1954	0.366	1.571
1955	0.124	1.127
1956	0.107	0.496
1957	0.141	0.842
1958	0.159	2.181
1959		0.824
	0.097	
1960	0.091	0.891
1961	0.226	2.964
1962	0.094	1.033
1963	0.156	1.200
1964	0.117	0.634
1965	0.080	0.802
1966	0.049	0.802
1967	0.098	1.720
1968	0.120	0.923
1969	0.337	2.063
1970	0.067	0.737
1971	0.118	0.998
1972	0.079	1.311
1973	0.075	1.058
1974	0.190	1.242
1975	0.075	1.036
1976	0.076	0.728
1977	0.058	0.715
1978	0.070	0.536
1979	0.211	1.200
1980	0.099	0.871
1981	0.069	0.728
1982	0.091	0.751
1983	0.173	1.003
1984	0.091	0.889
1985	0.118	1.198
1986	0.269	1.292
1987	0.123	1.080
1988	0.065	0.904
1989	0.076	0.881
1990	0.086	0.718
1991	0.089	0.896
1992	0.067	0.888
1993	0.063	0.683
1994	0.062	0.779
1995	0.091	0.635
1996	0.169	1.089

1997	0.328	1.123
1998	0.058	1.191
1999	0.074	0.525
2000	0.060	1.941
2001	0.023	0.613
2002	0.084	0.594
2003	0.066	0.848
2004	0.111	1.609
2005	0.078	0.731
2006	0.239	1.046
2007	0.183	0.996
2008	0.232	0.768
2009	0.069	0.732

	Annual Peaks for	Predeveloped and Mitigated.	POC
Rank	Predeveloped	Mitigated	100
1	0.3659	2.9642	
2	0.3373	2.1806	
3	0.3275	2.0632	
4	0.2691	1.9415	
5	0.2386	1.7202	
6	0.2321	1.6089	
7	0.2260	1.5712	
8	0.2114	1.3107	
9	0.1896	1.2916	
10	0.1830	1.2421	
11	0.1729	1.2001	
12	0.1686	1.1997	
13	0.1591	1.1981	
14	0.1562	1.1911	
15	0.1414	1.1500	
16	0.1236	1.1266	
17	0.1235	1.1229	
18	0.1201	1.1122	
19	0.1181	1.0889	
20	0.1180	1.0798	
21	0.1168	1.0760	
22	0.1109	1.0576	
23	0.1107	1.0456	
24	0.1073	1.0411	
25	0.1058	1.0365	
26	0.0991	1.0332	
27	0.0985	1.0027	
28	0.0971	0.9984	
29	0.0938	0.9962	
30	0.0923	0.9228	
31	0.0909	0.9039	
32	0.0908	0.8959	
33	0.0908	0.8914	
34	0.0906	0.8892	
35	0.0893	0.8877	
36	0.0860	0.8810	
37	0.0845	0.8750	
38	0.0803	0.8712	
39	0.0795	0.8484	

#1

0.0779	0.8424
0.0765	0.8243
0.0763	0.8023
0.0757	0.8018
0.0752	0.7791
0.0748	0.7682
0.0740	0.7511
0.0696	0.7366
0.0693	0.7323
0.0693	0.7307
0.0675	0.7284
0.0674	0.7276
0.0663	0.7177
0.0650	0.7150
0.0635	0.6831
0.0632	0.6353
0.0623	0.6340
0.0596	0.6126
0.0582	0.5939
0.0579	0.5359
0.0488	0.5249
0.0229	0.4962
	0.0765 0.0763 0.0757 0.0752 0.0748 0.0740 0.0696 0.0693 0.0693 0.0675 0.0674 0.0663 0.0650 0.0635 0.0635 0.0632 0.0623 0.0596 0.0582 0.0579 0.0488

Stream Protection Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
-----------	--------	-----	------------	-----------

FIOW (CIS)	FIEGEV	MIC Fel	LCentage	= 1433/
0.0500	15297	98517	644	Fail
0.0528	12957	93747	723	Fail
0.0556	10919	89341	818	Fail
0.0584	9176	85256	929	Fail
0.0612	7738	81598	1054	Fail
0.0640	6521	78091	1197	Fail
0.0667	5491	74861	1363	Fail
0.0695	4712	71888	1525	Fail
0.0723	4060	68957	1698	Fail
0.0751	3422	66241	1935	Fail
0.0779	2928	63674	2174	Fail
0.0806	2541	61258	2410	Fail
0.0834	2235	58883	2634	Fail
0.0862	1934	56595	2926	Fail
0.0890	1677	54541	3252	Fail
0.0918	1490	52574	3528	Fail
0.0945	1336	50627	3789	Fail
0.0973	1197	48809	4077	Fail
0.1001	1064	46948	4412	Fail
0.1029	985	45237	4592	Fail
0.1057	918	43590	4748	Fail
0.1085	853	41965	4919	Fail
0.1112	786	40425	5143	Fail
0.1140	744	38906	5229	Fail
0.1168	689	37644	5463	Fail
0.1196	642	36318	5657	Fail

0.1224 0.1251 0.1279	610 586 565	34971 33752 32575	5732 5759 5765	Fail Fail Fail
0.1307	545	31442	5769	Fail
0.1335	522	30351	5814	Fail
0.1363 0.1390	490 470	29260 28297	5971 6020	Fail Fail
0.1418	446	27313	6123	Fail
0.1446	425	26330	6195	Fail
0.1474	402	25410	6320	Fail
0.1502 0.1530	383 363	24512 23677	6400 6522	Fail Fail
0.1550	363 351	22843	6507	Fail
0.1585	336	22030	6556	Fail
0.1613	327	21271	6504	Fail
0.1641	319	20548	6441	Fail
0.1669 0.1696	310	19851	6403 6370	Fail
0.1696	301 292	19175 18561	6370 6356	Fail Fail
0.1752	278	17915	6444	Fail
0.1780	269	17314	6436	Fail
0.1808	257	16756	6519	Fail
0.1835	245	16202 15712	6613	Fail
0.1863 0.1891	232 221	15/12	6772 6868	Fail Fail
0.1919	212	14703	6935	Fail
0.1947	199	14183	7127	Fail
0.1975	186	13706	7368	Fail
0.2002 0.2030	177 167	13280 12825	7502 7679	Fail Fail
0.2050	158	12825	7837	Fail
0.2086	151	11993	7942	Fail
0.2114	144	11599	8054	Fail
0.2141	134	11208	8364	Fail
0.2169 0.2197	126 117	10827 10485	8592 8961	Fail Fail
0.2225	100	10485	10147	Fail
0.2253	85	9815	11547	Fail
0.2281	74	9497	12833	Fail
0.2308	60	9221	15368	Fail
0.2336 0.2364	51 48	8930 8639	17509 17997	Fail Fail
0.2392	39	8365	21448	Fail
0.2420	37	8096	21881	Fail
0.2447	35	7860	22457	Fail
0.2475	30	7608 7256	25360	Fail
0.2503 0.2531	27 20	7356 7131	27244 35655	Fail Fail
0.2559	16	6930	43312	Fail
0.2586	15	6708	44720	Fail
0.2614	10	6483	64830	Fail
0.2642	7	6282 6087	89742	Fail
0.2670 0.2698	6 4	6087 5910	101450 147750	Fail Fail
0.2726	4	5734	143350	Fail
0.2753	4	5544	138600	Fail
0.2781	4	5345	133625	Fail

0.2809 0.2837 0.2865 0.2892 0.2920 0.2948 0.2976 0.3004 0.3031 0.3059 0.3087 0.3115 0.3143 0.3171	4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5202 5058 4902 4750 4616 4494 4391 4282 4158 4038 3942 3841 3734 3649	130050 126450 122550 158333 153866 149800 146366 142733 138600 134600 134600 131400 128033 124466 121633	Fail Fail Fail Fail Fail Fail Fail Fail
0.3143	3	3734	124466	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.2205 acre-feet On-line facility target flow: 0.3089 cfs. Adjusted for 15 min: 0.3089 cfs. Off-line facility target flow: 0.1746 cfs. Adjusted for 15 min: 0.1746 cfs.

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated		Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	08	No Treat. C:	redit			
Compliance	with LID Standa	rd 8				
Duration An	alysis Result =	Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

SECTION 5: CONVEYANCE ANALYSIS AND DESIGN

The proposed collection and conveyance systems are comprised of catch basins, storm drainage pipes, detention facilities, and BayFilter water quality catch basin structures. Catch basins are located such that each section of storm drainage pipe will adequately convey associated tributary area flows. Conveyance analysis has been performed for the proposed pipe network. The pipe was analyzed against the peak 100-year mitigated flow for the West Basin, as this is the most critical event. The following page shows the conveyance analysis calculations and results.

Open Channel Flow Calculator		Land Development Consultants, Inc.
For (Circular Pipes	14201 NE 200th St. Ste. 100 Tel: (425) 806-1869
		Woodinville, WA 98072 Fax: (425) 482-2893
Project Name:	Kallicott	Project No.: 21-202
Description:	West basin developed	100 yr flow Date: 2/21/2023
		Calc. By: NJM
Pipe Diameter (D) =	12 in	
Pipe Slope (S) =	0.50 %	
Flow Depth (y) =	<u>0.91</u> ft	
Flowrate (Q) =	2.93 cfs	
Mannings Coeff. (n) =	0.012	
Theta Angle (θ) =	5.06 rad	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Wetted Area (A) =	0.75 ft ²	
Wet. Perimeter (P) =	2.53 ft	
Hydraulic Radius (R) =	0.30 ft	
Top Width (T) =	0.57 ft	
Flow Velocity =	3.90 fps	

Formulas:

Theta Angle (θ):	If $y \ge r$: $\theta = 2\pi - 2a\cos(\frac{y-r}{r})$	where: r = Pipe Radius
	If $y \le r$: $\theta = 2a\cos(\frac{r-y}{r})$	where: r = Pipe Radius
Wetted Area (A):	$A = \frac{1}{8} (\theta - \sin \theta) d^2$	
Wetted Perimeter (P):	$P = \frac{1}{2} \theta d$	
Hydraulic Radius (R):	$R = \frac{A}{P}$	
Top Width (T):	$T = \sin\left(\frac{\theta}{2}\right)d$	

SECTION 6: OPERATIONS AND MAINTENANCE MANUAL

The proposed storm drainage system consists of buried pipes, catch basins, detention facilities, and water quality treatment using BayFilter catch basin structures. These facilities will require periodic maintenance and inspection. Inspection and maintenance procedures are contained on the following pages. This information was taken from the 2019 SWMMWW. Maintenance information specific to the proprietary media filter drains is provided.

Table V-4.5.2(3) Maintenance Standards - Closed Detention Systems(Tanks/Vaults)

Maintenance Component	Detect	Conditions When Maintenance is Needed	Results Expec- ted When Maintenance is Performed
	Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
	Debris and Sed- iment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter. (Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	All sediment and debris removed from storage area.
Storage Area	Joints Between Tank/Pipe Sec- tion	Any openings or voids allowing mater- ial to be transported into facility. (Will require engineering analysis to determine structural stability).	All joint between tank/pipe sec- tions are sealed.
	Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or main- tenance/inspection personnel determ- ines that the vault is not structurally sound.	Vault replaced or repaired to design spe- cifications and is structurally sound.
	Frame and/or Top Slab	Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls.	No cracks more than 1/4-inch wide at the joint of the inlet/out- let pipe.
Manhole	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.

Table V-4.5.2(3) Maintenance Standards - Closed Detention Systems(Tanks/Vaults) (continued)

Maintenance Component	Detect	Conditions When Maintenance is Needed	Results Expec- ted When Maintenance is Performed
	Locking Mech- anism Not Work- ing	Bolts into frame have less than 1/2 inch	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one main- tenance per- son.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design stand- ards. Allows maintenance person safe access.
Catch Basins	See "Catch Bas- ins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

Table V-4.5.2(4) Maintenance Standards - Control Structure/Flow

Restrictor

Maintenance Component	Detect	Condition When Main- tenance is Needed	Results Expected When Maintenance is Performed
	Debris (Includes	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
General		Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb). Connections to outlet pipe	Structure in correct position. Connections to outlet pipe are water tight; structure repaired or replaced and works as

Table V-4.5.2(4) Maintenance Standards - Control Structure/FlowRestrictor (continued)

Maintenance	Defect	Condition When Main-	Results Expected When
Component	Defect	tenance is Needed	Maintenance is Performed
		are not watertight and show signs of rust.	designed.
		Any holes - other than designed holes - in the structure.	Structure has no holes other than designed holes.
		Cleanout gate is not water- tight or is missing.	Gate is watertight and works as designed.
Cleanout	Damaged or	Gate cannot be moved up and down by one main- tenance person.	Gate moves up and down eas- ily and is watertight.
Gate	Missing	Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not work- ing properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Sys- tems" (No. 3).	See "Closed Detention Sys- tems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

		Maintenance Standards - Catch Das	Results
Maintenance Component	Detect	Conditions When Maintenance is Needed	Expected When Main-
			tenance is performed
General	Trash & Debris		No Trash or debris loc- ated imme- diately in front of catch basin or on grate open- ing. No trash or debris in the catch basin. Inlet and out- let pipes free of trash or debris. No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 per- cent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks. Frame is sit-

Table V-4.5.2(5) Maintenance Standards - Catch Basins

		enance Standards - Catch Basins (c	Results
Maintenance Component	Detect	Conditions When Maintenance is Needed	Expected When Main-
			tenance is
			performed
		Frame not sitting flush on top slab, i.e., sep- aration of more than 3/4 inch of the frame from the top slab. Frame not securely attached	ting flush on the riser rings or top slab and firmly attached.
	Fractures or	Maintenance person judges that structure is unsound.	repaired to
	Cracks in Basin Walls/	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the	design stand- ards.
	Bottom	joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
		If failure of basin has created a safety, func- tion, or design problem.	Basin replaced or repaired to design stand- ards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No veget- ation block- ing opening to basin.
	-	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No veget- ation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires main- tenance.	Catch basin cover is closed
Cover	•	Mechanism cannot be opened by one main- tenance person with proper tools. Bolts into	Mechanism opens with

Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Main- tenance is performed
	Working	frame have less than 1/2 inch of thread.	proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access	Cover can be removed by one main-
		to maintenance.)	tenance per- son.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, mis- alignment, rust, cracks, or sharp edges.	Ladder meets design stand- ards and allows main- tenance per- son safe access.
	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate open- ing meets design stand- ards.
Metal Grates (If Applic- able)	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

Table V-4.5.2(15) Maintenance Standards - Manufactured Media Filters

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Below Ground Vault	Sediment Accu-	Sediment depth exceeds 0.25- inches.	No sediment depos-

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
	mulation on Media.		its which would impede permeability of the compost media.
	Sediment Accu- mulation in Vault	Sediment depth exceeds 6-inches in first chamber.	No sediment depos- its in vault bottom of first chamber.
	Trash/Debris Accumulation	Trash and debris accumulated on compost filter bed.	Trash and debris removed from the compost filter bed.
	Sediment in Drain Pipes/Clean- Outs	When drain pipes, clean-outs, become full with sediment and/or debris.	Sediment and debris removed.
	Damaged Pipes	Any part of the pipes that are crushed or damaged due to cor- rosion and/or settlement.	Pipe repaired and/or replaced.
	Damaded/Not	Cover cannot be opened; one per- son cannot open the cover using normal lifting pressure, cor- rosion/deformation of cover.	Cover repaired to proper working spe- cifications or replaced.
	Includes Cracks in Wall,	Cracks wider than 1/2-inch or evid- ence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determine that the vault is not struc- turally sound.	repairs made so that vault meets design specifications and is
	Frame and/or Top Slab	Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or evid- ence of soil particles entering through the cracks.	no cracks exist wider
		Baffles corroding, cracking warp- ing, and/or showing signs of failure as determined by main- tenance/inspection person.	Baffles repaired or replaced to spe- cifications.

Table V-4.5.2(15) Maintenance Standards - Manufactured Media Filters (continued)

Table V-4.5.2(15) Maintenance Standards - Manufactured Media Filters (continued)

Maintenance Component	Detect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
	Damaged	Ladder is corroded or deteriorated, not functioning properly, not securely attached to structure wall, missing rungs, cracks, and mis- aligned.	Ladder replaced or repaired and meets specifications, and is safe to use as determ- ined by inspection personnel.
Below Ground Cart-	Media	imedia takes londer than 1 hour	Media cartridges replaced.
ridge Type	Short Circuiting	Flows do not properly enter filter cartridges.	Filter cartridges replaced.

Table V-4.5.2(19) Maintenance Standards - Media Filter Drain (MFD)(continued)

Maintenance Component	Detect	Conditions When Main- tenance is Needed	Results Expected When Maintenance is Per- formed
		embankment.	brushy vegetation on adja- cent slopes.
	Trash and debris	Trash and debris have accu- mulated on embankment.	Remove trash and debris from embankment.
	Flooding of Media filter drain	When media filter drain is inundated by flood water	Evaluate media filter drain material for acceptable infiltration rate and replace if media filter drain does not meet long-term infilt- ration rate standards.

BAYFILTER OPERATION

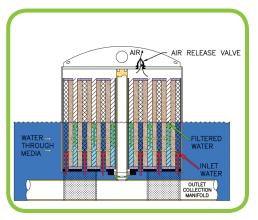
Stormwater runoff enters the manhole or concrete structure via an inlet pipe and begins to fill the structure. When the water surface elevation in the vault/manhole reaches the minimum operating level, water flows through the BayFilter driven by a hydrostatic head. Within the BayFilter, the water flows through a proprietary filter media and drains via a vertical pipe. The vertical pipe is connected to the under drain system, which conveys filtered water to the outfall.

During a typical storm event, the BayFilter system has four cycles:

- A. BayFilter cartridge fills and releases air
- B. Positive head filtration
- C. Siphon (negative head) filtration
- D. Siphon break and hydrodynamic backwash

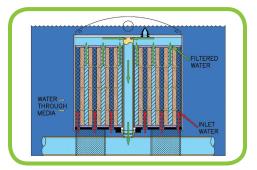

The cycle operation of a BayFilter is as follows:

A. BayFilter cartridge fill and air release: The BayFilter vault and BayFilter cartridges fill when stormwater flow enters the system. As the vault fills, water enters the BayFilter cartridge through the inlet plate on the bottom. Air is purged from the media spiral and filter housing during this process.

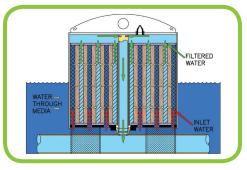

The air release is critical for the proper functioning of the siphon. The siphon draws flow through the BayFilter during periods of low water in the vault.

BayFilter Vault

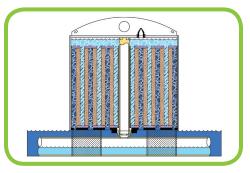
BayFilter Cutaway

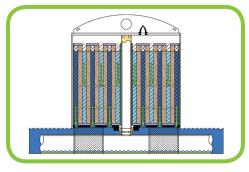


Cartridge Filling


THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS[™]

- B. Positive Head Filtration: Water enters the Filter from the bottom of the filter housing and travels upward through the inlet-flow conduit-spiral. From the inlet spiral, untreated water flows horizontally through the engineered media. Treated water exits the engineered media and flows into the outlet-flow conduit-spiral. Treated water flows vertically to the top of the cartridge where it can exit through the outlet pipe—please see product details (pg.6) for operating head levels. Finally, filtered water leaves the system via the outlet.
- **C.** Siphon (Negative Head) Filtration: After the water level in the vault falls below the top of the filter cartridgeminimum operating head level, a siphon is established and water will continue to flow through the filter media until the siphon is broken. During siphon, the water level in the vault will decrease until it reaches the inlet plate of the BayFilter.
- D. Siphon Break and Hydrodynamic Backwash: When the water level drops below the inlet plate, air enters the filter and the siphon breaks. Once the siphon breaks, a gravity-driven backwash occurs with all of the water flowing from the outlet pathway backwards through the filter media. This backwash has the effect of dislodging particles captured in the filtration layers and re-establishing porosity. Dislodged particles are transported back in to the filter vault and accumulate on the filter vault floor.


Each BayFilter has a maximum flow rating. At this flow, each cartridge can treat the specified total sediment load before requiring maintenance. BayFilter flow may also be custom regulated to meet specified design parameters by modifying the flow control orifice. Please contact BaySaver for custom design requirements.


Positive Filtration

Siphon Filtration

Siphon Break

Backwash

Pre-Assembled Manifold

In some areas the vaults can be provided with pre-installed manifold systems. Please contact your local ADS or BaySaver representatives for additional details.

Inspection and Maintenance

The BayFilter system requires periodic maintenance to continue operating at the design efficiency. The maintenance process is comprised of the removal and replacement of each BayFilter cartridge, vertical drain down module; and the cleaning of the vault or manhole with a vacuum truck.

The maintenance cycle of the BayFilter system will be driven mostly by the actual solids load on the filter. The system should be periodically monitored to be certain it is operating correctly. Since stormwater solids loads can be variable, it is possible that the maintenance cycle could be more or less than the projected duration.

BayFilter systems in volume-based applications are designed to treat the WQv in 24 to 48 hours initially. Late in the operational cycle of the BayFilter, the flow rate will diminish as a result of occlusion. When the drain down exceeds the regulated standard, maintenance should be performed.

When a BayFilter system is first installed, it is recommended that it be inspected every six (6) months. When the filter system exhibits flows below design levels the system should be maintained. Filter cartridge replacement should also be considered when sediment levels are at or above the level of the manifold system. Please contact the BaySaver Technologies Engineering Department for maintenance cycle estimations or assistance at **1.800.229.7283.**

Maintenance Procedures

- 1. Contact BaySaver Technologies for replacement filter cartridge pricing and availability at 1-800-229-7283.
- 2. Remove the manhole covers and open all access hatches.
- Before entering the system make sure the air is safe per OSHA Standards or use a breathing apparatus. Use low O₂, high CO, or other applicable warning devices per regulatory requirements.
- 4. Using a vacuum truck remove any liquid and sediments that can be removed prior to entry.
- 5. Using a small lift or the boom of the vacuum truck, remove the used cartridges by lifting them out.
- 6. Any cartridges that cannot be readily lifted can be easily slid along the floor to a location

BayFilter System Cleanout

Vactor Truck Maintenance

Jet Vactoring Through Access Hatch

they can be lifted via a boom lift.

- 7. When all the cartridges have been removed, it is not practical to remove the balance of the solids and water. Loosen the stainless clamps on the Fernco couplings for the manifold and remove the drain pipes as well. Carefully cap the manifold and the Ferncos and rinse the floor, washing away the balance of any remaining collected solids.
- 8. Clean the manifold pipes, inspect, and reinstall.
- 9. Install the exchange cartridgess and close all covers.
- 10. The used cartridges may be sent back to BaySaver Technologies for recycling.

BayFilter Availability and Cost

BayFilter systems are available throughout the United States from BaySaver Technologies. Material, installation, and maintenance costs vary with location. For BayFilter pricing in your area, please contact BaySaver Technologies at 1-800-229-7283.

BayFilter cartridges and outlet components can be shipped anywhere in the world. Manholes and precast vaults are also supplied by BaySaver Technologies as part of a complete stormwater filtration system.

BayFilter Specifications

Products

- A. Internal components: all components including concrete structure(s), PVC manifold piping and filter cartridges, shall be provided by BaySaver Technologies 1-800-229-7283).
- B. PVC manifold piping: all internal PVC pipe and fittings shall meet ASTM D1785. Manifold piping shall be provided to the contractor pre-cut and/or preassembled. Minor field modifications may be necessary.
- C. Filter cartridges: external shell of the filter cartridges shall be substantially constructed of polyethylene or equivalent material acceptable to the manufacturer. Filtration media shall be arranged in a spiral layered fashion to maximize available filtration area. An orifice flow control (i.e. flow disk) shall be supplied with each cartridge to restrict the flow rate to a maximum of 45 gpm (170 l/min).
- D. Filter media: filter media shall be a proprietary mix produced by BaySaver Technologies and may consist of the following materials: zeolite, perlite, and activated alumina and/or other materials required to meet the project pollutant removal requirements.

Manifold Tee View of a Cleaned System

Cartridge Hoist Point

SECTION 7: SPECIAL REPORTS AND STUDIES

The following studies were conducted in preparation of this Report:

• Geotechnical Investigation, Cobalt Geosciences, Dated December 20, 2021