Mack Townhomes

Preliminary Drainage Report

Prepared for

City of Marysville 80 Columbia Ave Marysville, WA 98270

Prepared by Tom Abbott, PE

Reviewed by Tom Abbott, PE

June 2022

Job No: C22-172

TABLE OF CONTENTS

Section	Title	
1	Project Overview	1-1
2	Temporary Erosion and Sediment Control Design	2-1
3	Downstream Analysis	3-1
4	Detention and Water Quality Treatment Design	4-1
5	Conveyance Analysis and Design	5-1
6	Operations and Maintenance Manual	6-1
7	Special Reports and Studies	7-1

APPENDICES

#	Title
1	Project Overview
3	Resource Review
4	Site Hydrology

SECTION 1: PROJECT OVERVIEW

The proposed Mack Townhomes project is comprised of parcel number 30050900400300 and proposes the construction of 22 townhomes on a single lot with associated utilities, drive accesses, and open spaces on a 1.18-acre site. There are no frontage improvements proposed on the site, but access to the site will be from State Ave via an access easement to the south of the project. The project address is 11115 Smokey Point BLVD NE, Marysville, WA. See the Vicinity Map in the following pages for visual representation of the subject property.

Existing Site

The property is currently occupied by an industrial storage facility and associated vehicles. All structures on site will be demolished as part of the proposed development. The site is bordered to the north by R12 (Multi-Family Low) zoned lands. To the south, east and west the property is surrounded by MU (Mixed Use) zoned lands. A project with similar townhome architecture is currently being constructed just east of the property.

The proposed development will exist within the bounds of the Onsite Basin and the Offsite Access Road Basin which contributes runoff for the access road that leads south of the site. In the existing condition, there is no clear discharge from the site and it is assumed that all runoff infiltrates onsite. See Predeveloped and Developed Hydrology Maps in Appendix 4 for a visual representation of these basins.

A geotechnical engineering report was prepared by Earth Solutions Northwest (dated January, 2021) for the project just east of the proposed site. The City of Marysville has allowed this geotechnical report and its assumptions to be utilized for the proposed site due to proximity.

Site soils are classified as Marysville sand recessional outwash, revealing poorly graded sands. Groundwater seepage was not encountered in the investigation. The result of test pits performed on the site gives a design infiltration rate of 2 in/hr, which has been utilized in design assumptions for the infiltration systems in this report. The groundwater table was not encountered by the geotechnical engineer during field excavations, but a recommendation has been given to provide a groundwater elevation of 6 feet below existing grade. This assumption has been utilized in infiltration system design.

Proposed Development

The proposed Mack Townhomes project will develop parcel number 30050900400300 with 22 townhome units on a single lot and associated utilities, driveways, and landscaping, and open spaces. Stormwater will be infiltrated 100% onsite via a system of pervious pavements and infiltration trenches. Onsite development will disturb 1.18 acres, while offsite improvements will impact an additional 0.31 acres within easement and access areas. All existing structures will be demolished as part of the development.

Proposed Drainage System

This project is subject to the requirements of the 2014 Stormwater Management Manual for Western Washington (DOE Manual). In compliance with 2014 DOE Manual, all runoff from developed/disturbed surfaces must be collected, treated, and released to natural drainage courses unless it is dispersed or infiltrated. The project proposes to infiltrate 100% of stormwater runoff from pervious and impervious surfaces.

Proposed pollution generating impervious surfaces (PGIS) will exceed the 5,000 SF threshold and thus basic water quality treatment will be provided via water quality treatment structures that treat stormwater runoff from roadways and driveways prior to infiltration.

The disturbed area of the development is contained within an Onsite Basin, consisting of onsite developed area and the offsite Access Road Basin. Pervious pavement is proposed for driveways

associated with units 1-4 and 12-22 while units 5-11 have standard driveway pavement. A separate infiltration area is proposed to infiltrate all roof runoff from the proposed buildings. See Section 4.0 for additional discussion regarding proposed stormwater management and water quality treatment measures.

Erosion/Sedimentation Control

Erosion control measures that will be utilized during construction will include a combination of silt fence, storm drain inlet protection and interceptor swales. See Section 2.0 for discussion of how SWPPP Elements are addressed.

Minimum Requirements

Per the 2014 DOE Manual, Minimum Requirements 1-9 apply to the proposed development.

Minimum Requirement #1: Preparation of Stormwater Site Plans

A report along with the construction plans, to be submitted at a later date, satisfies the minimum requirement.

Minimum Requirement #2: Construction Stormwater Pollution Prevention

See Section 2 of this Report for the SWPPP BMP Elements, and the SWPPP (submitted as a separate document) for a complete discussion of erosion control BMP's and their use specific to the site.

Minimum Requirement #3: Source of Pollution

Permanent source control BMPs are not applicable for the subject site since the associated activities for the new residence do not fall within the types of facilities listed within Volume IV of the DOE Manual (Residential developments are not required to implement source control BMP's). BMPs for erosion and sedimentation control are specified in the Construction Plans and the SWPPP.

Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls

Flow from the site will preserve its natural drainage pattern from the south to the northwest. Runoff flows towards an unnamed stream tributary to Quilceda Creek, which then discharges into Ebey Slough and Possession Sound.

Minimum Requirement #5: On-Site Stormwater Management

The project proposes to infiltrate 100% of stormwater runoff from the proposed development via pervious pavement and infiltration trenches. Two separate trenches will infiltrate pavement/driveway and roof runoff, respectively. Pervious pavement driveways are proposed for units 1-4 and 12-22.

Minimum Requirement #6: Runoff Treatment

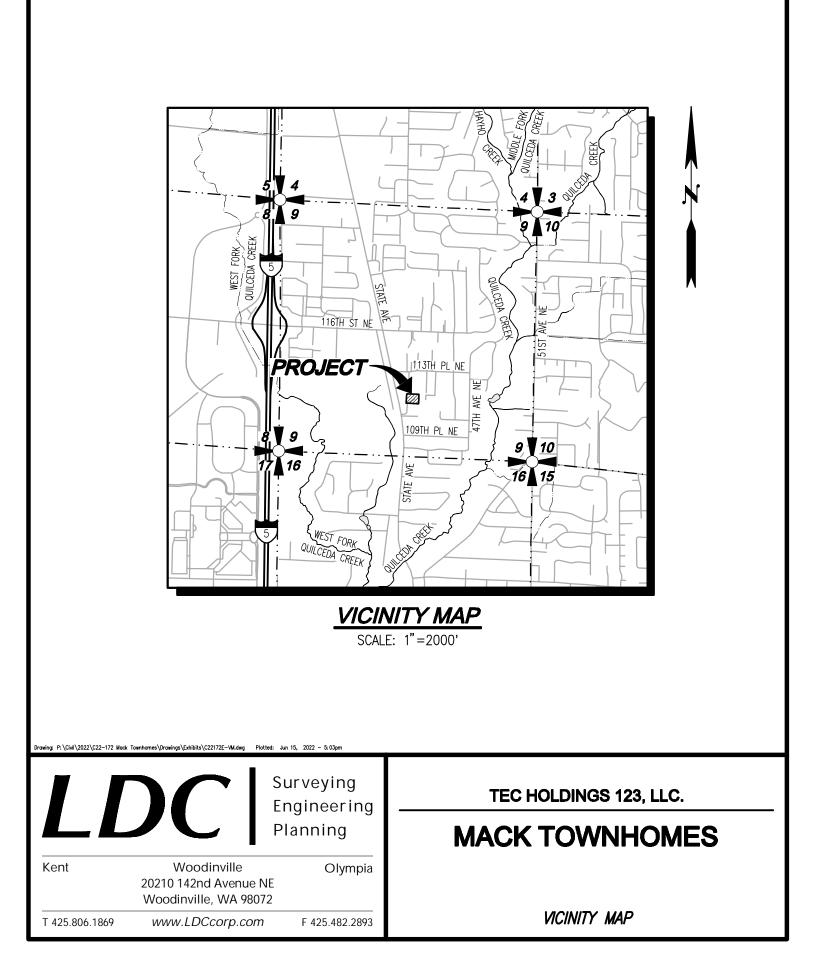
The project will exceed the 5,000 SF PGHS threshold and basic water quality treatment is required for PGIS surfaces. Perkfilter water quality treatment units are proposed for collecting and treating stormwater runoff from driveways and pavement prior to infiltration.

Minimum Requirement #7: Flow Control

Utilizing design infiltration rates (2.0 in/hr) provided by the Geotechnical report prepared for the project adjacent, the project proposes to infiltrate 100% of stormwater runoff from the proposed development via pervious pavement and infiltration trenches. Two separate trenches will infiltrate pavement/driveway and roof runoff, respectively. Pervious pavement driveways are proposed for units 1-4 and 12-22.

Minimum Requirement #8: Wetlands Protection

There are no wetlands to protect within the site boundaries or any wetlands within a quarter mile downstream that will be impacted by the development.



<u>Minimum Requirement #9: Operation and Maintenance</u> See Operations and Maintenance in Section 6 of this report.

Appendix 1: Project Overview

- 1. Figure 1.0 Vicinity Map
- 2. Figure 2.0 Existing Conditions Map

SOURCE INFORMATION	SOURCE AGENCY DESCRIPTION	KING COUNTY GIS PARCEL BOUNDARY	KING COUNTY GIS CONTOURS GENERATED FROM PADE EADEN LIDAR (KING CONINER)		ACCURACY OF APPROXIMATELY 1 FOOT.			
-	Surveying	Engineering	Planning	Kent	1851 Central PI 5, #101 Kent WA 98030	00000 111 11000	www.LDCcorp.com F 425.482.2893	
	Surveying		して	Woodinville	20210 142nd Avenue NE Woodinville WA 98072		Т 425.806.1869 www.LDCcorp.c	_
LEC				MAC	EVICT			

URE: **2.0**

SECTION 2: TEMPORARY EROSION AND SEDIMENT CONTROL DESIGN

SWPPP Design Elements

A Stormwater Pollution Prevention Plan (SWPPP) will be provided prior to construction. The SWPPP report is modeled under the guidelines of Volume II, Section 3 of the 2014 Stormwater Management Manual for Western Washington. Construction SWPPP Elements #1 through #13 are addressed below.

Element #1 - Mark Clearing Limits

All clearing limits will be delineated with high visibility plastic fence and/or silt fence. See sheets ER-01 of the preliminary plans for locations and details.

Element #2 – Establish Construction Access

Stabilized construction accesses will be installed as shown on the preliminary plans. See sheets ER-01 and ER-02 of the preliminary plans for locations and details.

Element #3 - Control Flow Rates

Detention of construction period runoff will be provided by means of a sediment pond located at the northern portion of the site. See sheets ER-01 of the preliminary plans for location and details for flow and sediment control BMP's.

Element #4 – Install Sediment Controls

Silt fence, catch basin protection, and interceptor swales will be utilized to contain sediments within the project's clearing limits. See sheets ER-01 and ER-02 of the preliminary plans for locations and details.

<u>Element #5 – Stabilize Soils</u>

Exposed soils will be stabilized as specified in the Grading and Erosion Control Notes with temporary and permanent seeding, mulching, and plastic covering. See sheet ER-02 of the preliminary plans for notes.

<u>Element #6 – Protect Slopes</u>

Slopes are minor on the subject site. Slopes shall be protected as specified under Element #5.

Element #7 – Protect Drain Inlets

Storm drain inlet protection will be utilized to contain sediments within the project's clearing limits. See sheets ER-01 and ER-02 of the preliminary plans for locations and details.

Element #8 – Stabilize Channels and Outlets

Temporary channels, shall be stabilized with check dams. See sheets ER-01 and ER-02 of the preliminary plans for locations and details.

Element #9 – Control Pollutants

Pollutants shall be controlled as specified in Volume IV of the 2014 DOE Manual—Source Control BMPs to address potential sources of pollution which may exacerbate possible soil/groundwater contamination identified onsite.

Element #10 - Control De-Watering

There will be no de-watering as a part of this project. See sheet ER-02 of the preliminary plans for notes.

Element #11 – Maintain BMPs

Maintenance of the BMPs is specified within the Construction Sequence and Grading and Erosion Control Notes. See sheets ER-01 and ER-02 of the preliminary plans for the Construction Sequence and notes.

Element #12: Manage the Project

The Grading and Erosion Control Notes specify seasonal work limitations. Maintenance of the BMPs is specified within the Construction Sequence and Grading and Erosion Control Notes. See sheets ER-01 and ER-02 of the preliminary plans for the Construction Sequence and notes.

Element #13: Protect on-site stormwater management BMPs

Infiltration areas are to be protected from overcompaction throughout construction for the sake of future infiltration BMP usage by construction fencing or other protective measures.

SECTION 3: DOWNSTREAM ANALYSIS REPORT

Task 1. Study Area Definition and Maps

King County Bare Earth LiDAR, survey, and 2021 aerial photography were the best topographical references available for the area containing the site. The limits of the downstream analysis extend roughly 0.25 miles beyond the subject property's natural discharge location.

Task 2. Resource Review

All of the resources below have been reviewed for existing and potential issues near the project site:

<u>Adopted Basin Plans</u>

No Adopted Basin Plans were located that include the project site.

<u>Drainage Basin</u>

This site is located in the Quilceda Creek Basin. Site flows that do not infiltrate onsite flow west and south to Quilceda Creek, which then discharges into Ebey Slough and Possession Sound.

Floodplain / Floodway (FEMA) maps

According to FEMA floodplain mapping, the subject property is not within a floodplain. Reference the FEMA floodplain map (panel #53061C0710E) in Appendix 3.

Critical Areas Map

No critical areas have been identified on, or immediately adjacent to, the project site.

<u>Drainage Complaints</u>

No relevant issues were identified near the proposed site.

Road Drainage Problems

No issues were identified near the proposed site.

<u>Soil Survey</u>

Site soils are classified as Marysville sand recessional outwash, revealing poorly graded sands. Groundwater seepage was not encountered in the investigation. The result of test pits performed on the site gives a design infiltration rate of 2 in/hr, which has been utilized in design assumptions for the infiltration systems in this report.

Wetland Inventory Maps

No wetlands were identified on, or immediately adjacent to, the project site.

Migrating River Studies

Migrating River Studies are not considered applicable to the proposed development.

Section 303d List of Polluted Waters

Washington State Department of Ecology's Water Quality Assessment for Washington contains listings for Quilceda Creek downstream of the project. Please refer to Appendix 3 for copies of applicable 303(d) listings.

Water Quality Problems

Quilceda Creek has been listed as a category 5 water due to pH and Dissolved Oxygen concerns. No water quality problems were identified which would be exacerbated by the proposed development as the project intends to infiltrate all stormwater.

<u>Stormwater Compliance Plans</u>

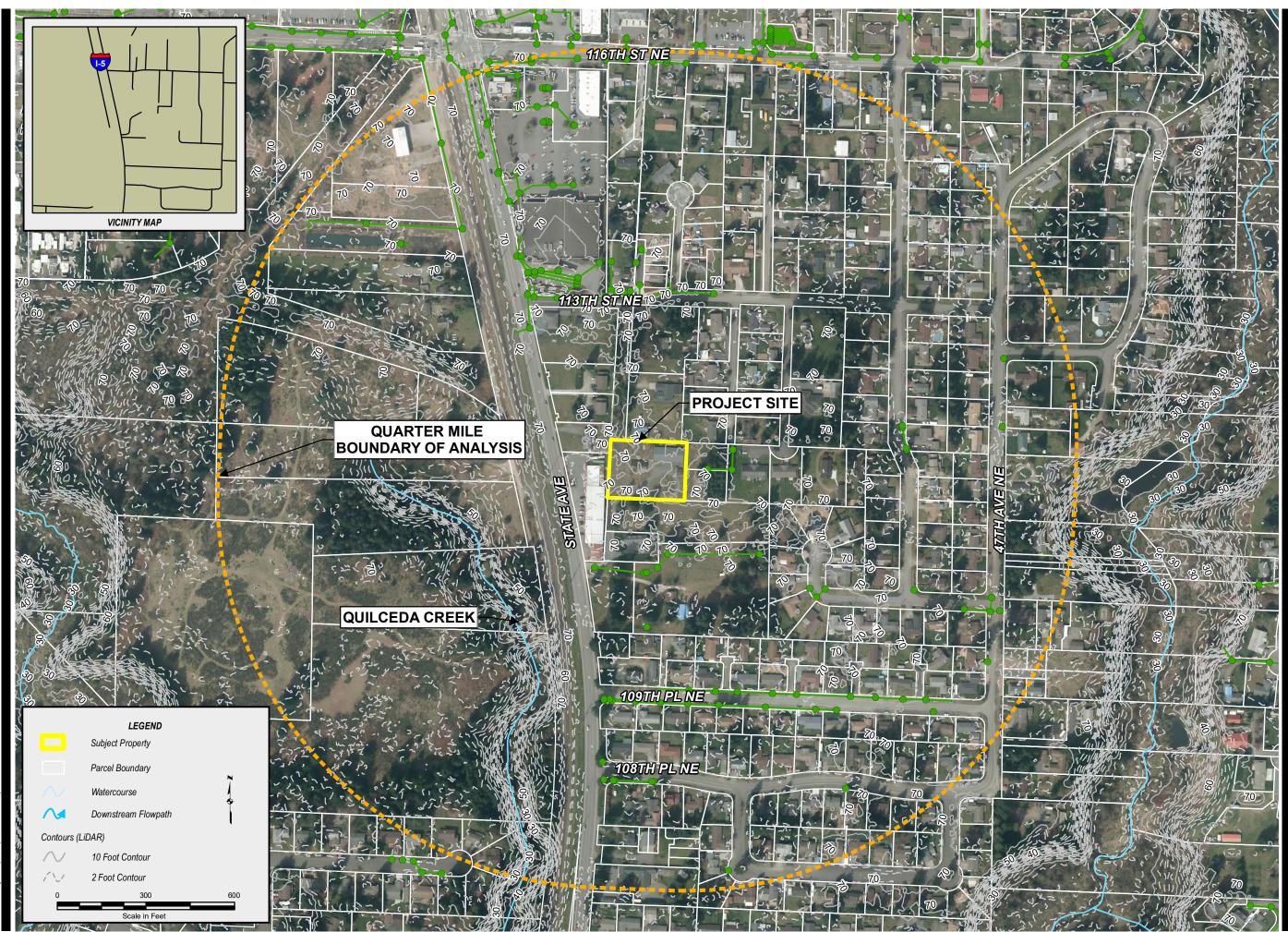
Not applicable to the proposed project.

Task 3. Field Inspection/Downstream Analysis

There is no discernable flowpath for surface water runoff from the site as topography is essentially flat. Given the soil types onsite, it is assumed that stormwater infiltrates onsite. For all stormwater that does not infiltrate, surface water is assumed to flow overlay generally south and west. Stormwater flows overland in this general direction before entering a roadside swale along State Ave. Flows generally travel south in the conveyance swale along State Ave prior to eventual discharge west into Quilceda Creek that occurs outside of the 0.25 mile boundary of analysis. See Figure 3.0, "Downstream Analysis Map" for a visual representation of current surface water discharge for stormwater that does not infiltrate onsite.

Task 4. Drainage System Description and Problem Descriptions

Based on the information available and all the resources available including visual inspection of the downstream flow path to the ¼-mile boundary, there is no evidence of existing or anticipated downstream drainage problems. All flows are adequately carried through natural channels to Ebey Slough and Possession Sound.

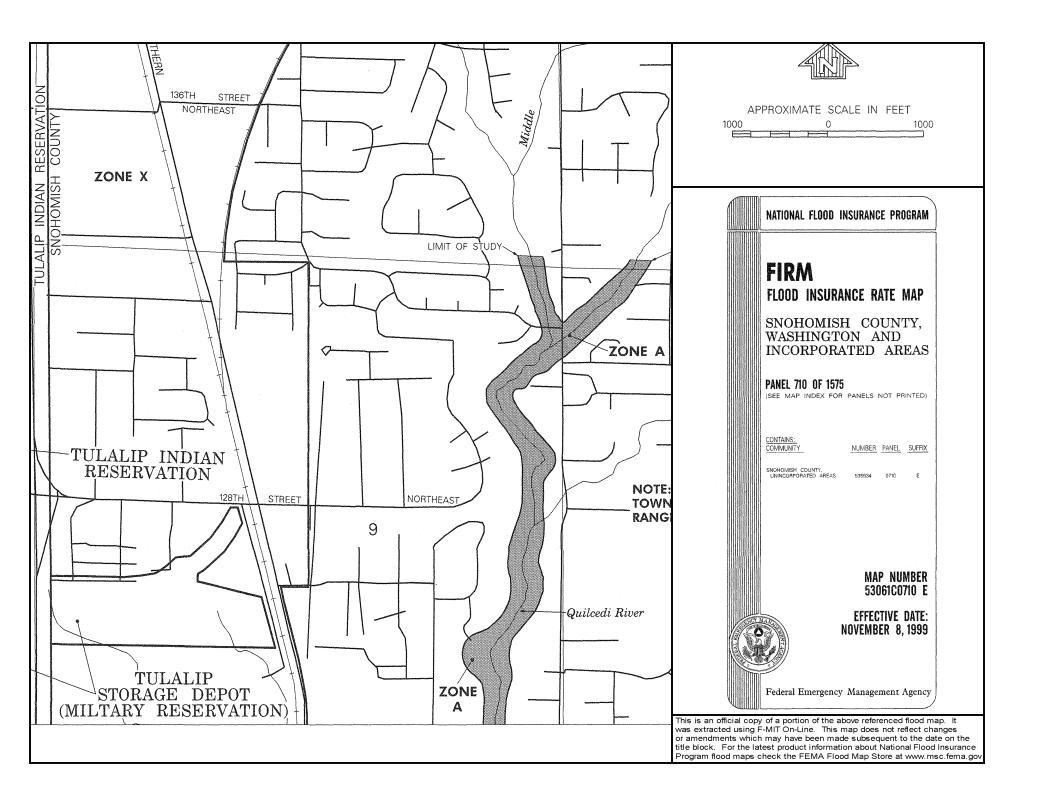

Task 5. Mitigation of Existing or Potential Drainage Problems

No evidence of existing or potential problems with downstream drainage conveyance infrastructure was found. Mitigation is not required.

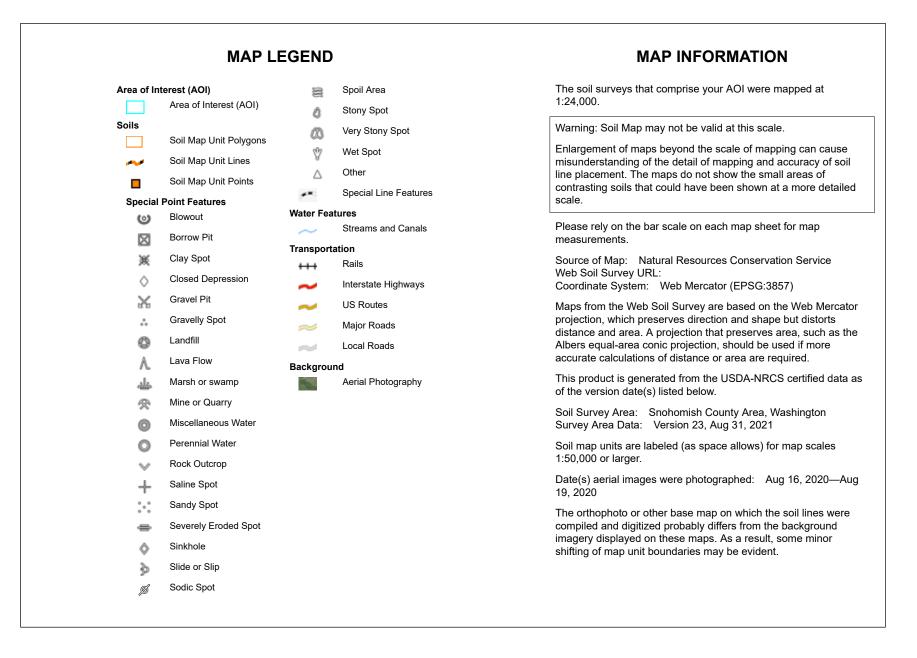
Appendix 3: Resource Review

- 1. Figure 3.0 Downstream Analysis Map
- 2. Downstream Analysis Photograph
- 3. FEMA Floodplain Map Panel #53061C0710E
- 4. USDA Soils Map
- 5. USDA Soils Description

S REJOR DEI DA SCJ				SOU	SOURCE INFORMATION
TATE ORT VISI B NU SIGN AWI TE: 6 ALE: RISE	U IIULUINGO 123, LL	Surveying	Surveying	SOURCE AGENCY	DESCRIPTION
EPL/ TH F ON: JMB NG I S/23/ S/23/ S/23/ DICT			Engineering	SNOHOMISH COUNTY GIS PARCEL BOUNDARY	PARCEL BOUNDARY
ER: C2 : TABB BY: TA 2022 SHOV ION: M		し	Planning	SNOHOMIISH COUNTY GIS	SNOHOMISH COUNTY GIS CONTOURS GENERATED FROM
ASHI 01 FE 22-172 0TT BBOT	MACK IOWNHOMES		Kent		THIS DATA HAS A STATED VERTICAL
2 7	DOWNSTRFAM ANALYSIS MAP	20210 142nd Avenue NE Woodinville, WA 98072	1851 Central P1 5, # 101 Kent, WA 98030		ACCURACY OF APPROXIMATELY 1 FOOT.
		T 425.806.1869 www.LDCcorp.com F 425.482.2893	m F 425.482.2893		
	-		1		


3.0

Downstream Analysis Photographs


Image 1: Roadside conveyance ditch along State Ave

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
57	Ragnar fine sandy loam, 0 to 8 percent slopes	1.1	100.0%
Totals for Area of Interest		1.1	100.0%

SECTION 4: DETENTION AND WATER QUALITY TREATMENT DESIGN

4.1 Predeveloped Hydrology

The predeveloped conditions were modeled in WWHM for the purpose of peak flow determination. Based on the site location, the WWHM used the SeaTac Gage and a Precipitation Scale factor of 1.20.

Onsite Basin:

The predeveloped condition applied to the Onsite Basin, which is to be developed into landscape, sidewalk and pavement on the site. For visual representation of the listed basins, see Figure 4.0, "Predeveloped Hydrology Map". The values as modeled in WWHM are as follows:

Onsite Basin		
Ground Cover	<u>Area (acre)</u>	
Forest, flat	0.60	
Total	0.60	

Offsite Access Road Basin:

The predeveloped condition applied to the Offsite Access Road Basin, which is to be developed into sidewalk and pavement for access to the site. For visual representation of the listed basins, see Figure 4.0, "Predeveloped Hydrology Map". The values as modeled in WWHM are as follows:

Table 2: Predeveloped Conditions:	Offsite Access Road Basin
-----------------------------------	---------------------------

Offsite Access Road Basin		
Ground Cover	<u>Area (acre)</u>	
Forest, flat	0.15	
Total	0.15	

<u>Roofs Basin:</u>

The predeveloped condition applied to the Roofs Basin, which is to be developed into the building footprint for the proposed buildings in the developed condition. For visual representation of the listed basins, see Figure 4.0, "Predeveloped Hydrology Map". The values as modeled in WWHM are as follows:

Table 3: Predeveloped Conditions: Roofs Basin

Roofs Ba	Isin
Ground Cover	<u>Area (acre)</u>
Forest, flat	0.50
Total	0.50

Pervious Driveways Basin:

The predeveloped condition applied to the Pervious Driveways Basin, which is to be developed into pervious pavement driveways for Units 1-4 and 12-22 in the developed condition. For visual

representation of the listed basins, see Figure 4.0, "Predeveloped Hydrology Map". The values as modeled in WWHM are as follows:

Table 4: Predeveloped Conditions: Pervious Driveways Basin

Pervious Driveways Basin	
Ground Cover	<u>Area (acre)</u>
Forest, flat	0.11
Total	0.11

4.2 Developed Hydrology

The proposed Mack Townhomes project will develop parcel number 30050900400300 with 22 townhome units on a single lot and associated utilities, driveways, and landscaping, and open spaces. Stormwater will be infiltrated 100% onsite via a system of pervious pavements and infiltration trenches. All stormwater runoff from developed surfaces will be infiltrated via an infiltration trench or pervious pavement.

<u>Onsite Basin:</u>

The developed Onsite Basin is 0.55 acres comprised of Drive A pavement and sidewalk and landscaped area. Runoff from the Onsite Basin is tributary to the infiltration trench underneath the pavement within Drive A. In the developed condition, the Onsite Basin has been modeled using WWHM with the following areas and ground cover designations:

Onsite Basin		
Ground Cover	<u>Area (acre)</u>	
Roads, flat	0.25	
Sidewalks, flat	0.04	
Pasture, flat	0.26	
Total	0.55	

Table 5: Developed Conditions: Onsite Basin

Offsite Access Road Basin:

The developed Offsite Access Road Basin is comprised of Drive A pavement and sidewalk within the access easement south of the project site. It is tributary to the infiltration trench underneath the pavement within Drive A. The Offsite Access Road Basin was modeled using WWHM with the following areas and ground cover designations:

Offsite Access Road Basin		
Ground Cover	<u>Area (acre)</u>	
Roads, flat	0.12	
Sidewalk, flat	0.03	
Total 0.15		

<u>Roofs Basin:</u>

The developed Roofs Basin is comprised of roof area associated with the 4 proposed buildings. Downspouts collect and route runoff from the buildings to the infiltration area beneath the driveways for Units 5-11. The Roofs Basin was modeled using WWHM with the following areas and ground cover designations:

Table 7: Developed Conditions: Roofs Basin

Roofs Basin	
Ground Cover	<u>Area (acre)</u>
Roofs, flat	0.50
Total	0.50

Pervious Driveways Basin:

The developed Pervious Driveways Basin is comprised of pervious driveway area for Units 1-4 and 12-22. Information on design of the Pervious Driveways can be found in Section 4.5. The Pervious Driveways Basin was modeled using WWHM using the pervious pavement tool with the following areas:

Table 8: Developed Conditions: Pervious Driveways Basin

Pervious Driveways Basin	
Ground Cover	<u>Area (acre)</u>
Driveway, flat*	0.11*
Total 0.11	

* See section 4.5 for modeling information

4.3 Infiltration Facilities Design

The project proposes to infiltrate stormwater runoff 100% via infiltration trenches and pervious pavement. Two separate infiltration trenches have been designed. The following are descriptions of the design parameters for both facilities while a summary of the pervious pavement driveway design can be found in Section 4.5:

Drive A Infiltration Facility:

The Drive A Infiltration Facility collects runoff from Drive A pavement and sidewalk as well as driveway runoff from units 5-11 and site landscaped areas. All stormwater is infiltrated 100% per WWHM modeling. The trench is located onsite underneath Drive A as well as under the offsite access road area within the access and utility easement.

The groundwater table in the area was not encountered by the geotechnical engineer during field excavations, but a recommendation has been given to provide a groundwater elevation of 6 feet below existing grade. The existing grade in the area of the infiltration trench is approximately EL = 68.50, which places the seasonal high groundwater elevation at approximately 62.50. This assumption has been utilized in infiltration system design.

A summary of the infiltration trench dimensions and WWHM modeling parameters can be seen below. See Appendix 4 for WWHM output, volume calculations, and additional facility design details.

Drive A Infiltration Facility		
Begin Infiltration	65.75	
Top of Infiltration	67.50	
Live Storage Depth	1.75′	
Groundwater Elevation (per Geotech)	62.50	
Separation from Groundwater Elevation	3.25′	
Modeled Footprint	290'x10.5' = 3,045 SF	
Provided Footprint	290'x10.5' = 3,045 SF	
Modeled Storage Volume	3,045 SF x 1.75' = 5,329 CF	
Provided Storage Volume	3,045 SF x 1.75' = 5,329 CF	
Void Space %	30%	
Design Infiltration Rate	2.0 in/hr	
Percent Infiltrated	100%	

Table 9: Drive A Infiltration Facility Design Summary

Roof Infiltration Facility:

The Roof Infiltration Facility collects runoff from the roofs of the 4 proposed buildings. All stormwater is infiltrated 100% per WWHM modeling. The trench is located onsite underneath driveways for units 5-11.

The groundwater table in the area was not encountered by the geotechnical engineer during field excavations, but a recommendation has been given to provide a groundwater elevation of 6 feet below existing grade. The existing grade in the area of the infiltration trench is approximately EL = 68.50, which places the seasonal high groundwater elevation at approximately 62.50. This assumption has been utilized in infiltration system design.

A summary of the infiltration trench dimensions and WWHM modeling parameters can be seen below. See Appendix 4 for WWHM output, volume calculations, and additional facility design details. Table 10: Roof Infiltration Facility Design Summary

Roof Infiltration Facility		
Begin Infiltration	66.00	
Top of Infiltration	68.00	
Live Storage Depth	2.0′	
Groundwater Elevation (per Geotech)	62.50	
Separation from Groundwater Elevation	3.50′	
Modeled Footprint	140′x17′ = 2,380 SF	
Provided Footprint	140'x17' = 2,380 SF	
Modeled Storage Volume	2,380 SF x 2.0' = 4,760 CF	
Provided Storage Volume	3,045 SF x 1.75' = 5,329 CF	
Void Space %	30%	
Design Infiltration Rate	2.0 in/hr	
Percent Infiltrated	100%	

4.4 Water Quality Treatment

Water Quality Treatment for the onsite developed area is accomplished through three Perkfilter catch basin water quality treatment units located along Drive A. A summary of design criteria is provided below:

Perkfilter-1	
Tributary Area	0.15 AC
Tributary PGIS Area	0.15 AC
Water Quality Flow Rate	0.0164 cfs
Number of Cartridges	1
Cartridge Height	12″
Internal Drop	1.8′
Peak Flow Rate	0.2020 cfs
Peak Flow Storm Event	100-year

Tahle 1	2: Perkfilter-2	P Desian	Summarv
Table 1	2. I CI KIIILEI -2	. Design	Summary

Perkfilter-2	
Tributary Area	0.10 AC
Tributary PGIS Area	0.06 AC
Water Quality Flow Rate	0.0085 cfs
Number of Cartridges	1
Cartridge Height	12″
Internal Drop	1.8′
Peak Flow Rate	0.1118 cfs
Peak Flow Storm Event	100-year

Table 13: Perkfilter-3 Design Summary

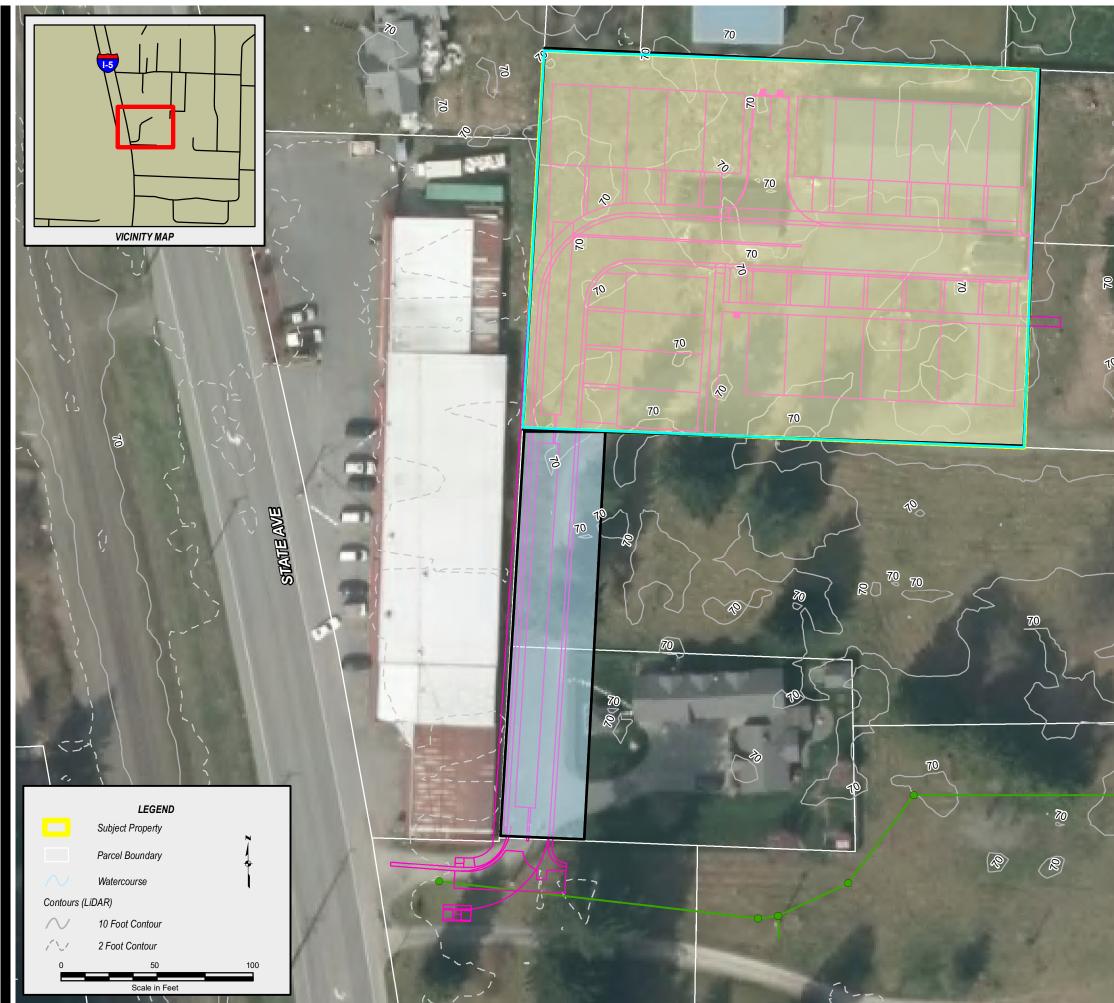
Perkfilter-3			
Tributary Area	0.40 AC		
Tributary PGIS Area	0.21 AC		
Water Quality Flow Rate	0.0273 cfs		
Number of Cartridges	1		
Cartridge Height	12″		
Internal Drop	1.8′		
Peak Flow Rate	0.3880 cfs		
Peak Flow Storm Event	100-year		

4.5 Pervious Pavement Design

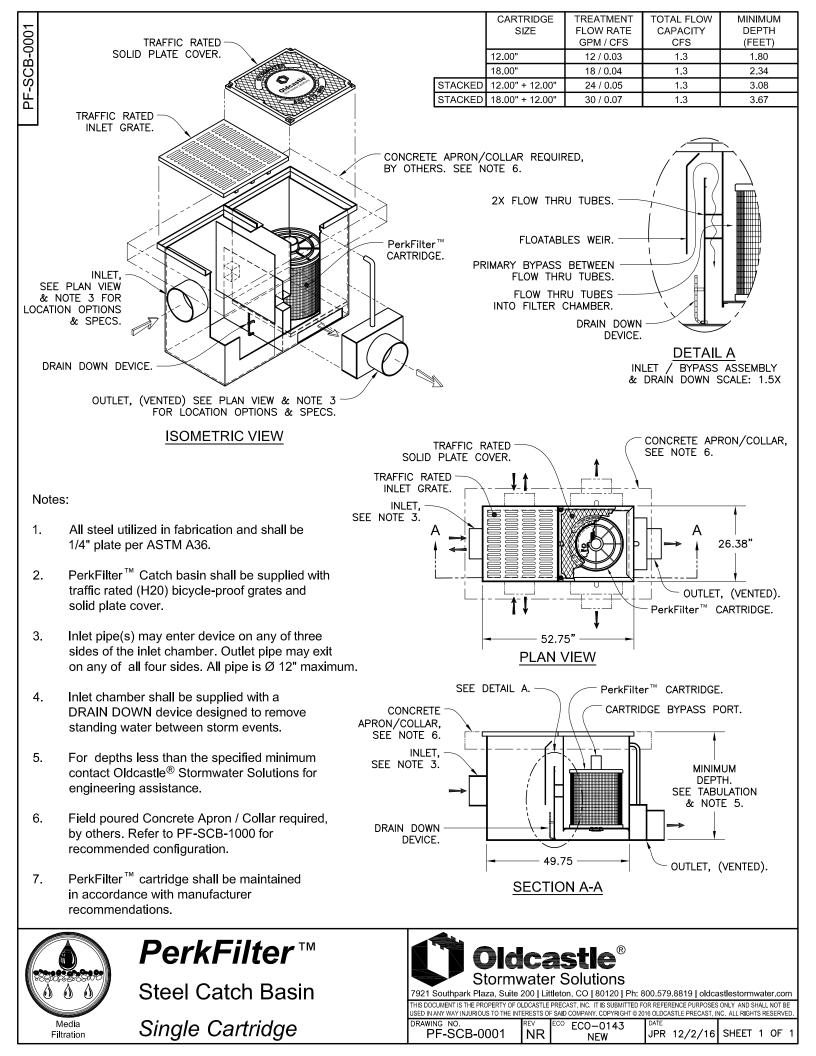
Pervious pavement driveways have been designed for driveways on units 1-4 and 12-22. The driveways mitigate their own surface area and infiltrate 100% of stormwater runoff per WWHM modeling. A summary of design criteria is provided below:

Pervious Pavement Driveways			
Top Pavement Section Depth	6″		
Pavement Void Ratio	40%		
Base Course Depth	9″		
Base Course Void Ratio	30%		
Pavement Area	4,900 SF		
Design Infiltration Rate	2.0 in/hr		
Percent Infiltrated	100%		

Table 14: Pervious Pavement Driveways Design Summary


Appendix 4: Detention and Water Quality Design

- 1. Figure 4.0: Predeveloped Hydrology Map
- 2. Figure 5.0: Developed Hydrology Map
- 3. Perkfilter Details
- 4. WWHM2012 Output Drive A Infiltration Facility
- 5. WWHM2012 Output Roof Infiltration Facility
- 6. WWHM2012 Output Pervious Pavement Driveways
- 7. WWHM2012 Output Perfilter-1
- 8. WWHM2012 Output Perfilter-2
- 9. WWHM2012 Output Perfilter-3



-		
1	PREDEVELOP	ED BASIN AREAS
	OFFSITE ACCESS	ROAD BASIN
-	FOREST	<u>0.15 AC</u>
	TOTAL =	0.15 AC
	ONSITE BASIN	
\rangle	FOREST	<u>0.60 AC</u>
	TOTAL =	0.60 AC
	ROOFS BASIN	
~	FOREST	<u>0.50 AC</u>
2~	TOTAL =	0.50 AC
10.74	PERVIOUS DRIVE	WAYS BASIN
	FOREST	<u>0.11 AC</u>
	TOTAL =	0.11 AC
0		
		100

F	·····································				SOU	SOURCE INFORMATION
ΊG	STAT NORT EVISI DB NU RAWI ESIGI RAWI ATE: 0 CALE JRISE	IEC HOLDINGS 123, LLC	Surveying	Surveying	SOURCE AGENCY	DESCRIPTION
UF	EPL/ TH F ON: JMB NG I NER NG I 6/23/ : AS DICT			Engineering	SNOHOMISH COUNTY GIS PARCEL BOUNDARY	PARCEL BOUNDARY
re: 4 .	SHOV ION: N		して	Planning	SNOHOMIISH COUNTY GIS	SNOHOMISH COUNTY GIS CONTOURS GENERATED FROM
C	/ASH 01 F 22-17 C22 0TT BBO	MACK IOWNHOMES	Woodinville	Kent		THIS DATA HAS A STATED VERTICAL
)	EET 72 2-172 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20210 142nd Avenue NE Woodinville WA 98072	1851 Central PI S, #101 Kent WA 98030		ACCURACY OF APPROXIMATELY 1 FOOT.
	4.					
	.0		Т 425.806.1869 инии.LDCcorp.com F 425.482.2893	rm F 425.482.2893		
		-				

			L.	111	
And A Lot of Lot	DEVELOPED BAS	SIN AREAS			E.
\bigcap	OFFSITE ACCESS RC		100		Contours Generated From Bare Earth Lidar (King County). This data has a stated vertical Accuracy of Approximately 1 Foot
	ROADS	0.12 AC	100	z	contours generated from Bare Earth Lidar (King County This data has a stated vertical Accuracy of Approximately 1 i Accuracy of Approximately 1
\rangle (SIDEWALKS	<u>0.03 AC</u>		AATION DESCRIPTION ARY	
	TOTAL =	0.15 AC		NATI(DESC	APPR()
{	ONSITE BASIN			SOURCE INFORMATION	Contours Generated From Bare Earth Lidar (King Cou This Data Has a Stated Ver Accuracy of Approximatel.
VA	ROADS	0.25 AC			
	SIDEWALK PASTURE	0.04 AC		PARC	ACCL
1.25	TOTAL =	<u>0.26 AC</u> 0.55 AC			20
1	ROOFS BASIN				
	ROOFS	<u>0.50 AC</u>		E V	
	TOTAL =	0.50 AC		SOL SOURCE AGENCY SNOHOMISH COUNTY GIS	SNOTOMIST COUNTY GIS
1000	PERVIOUS DRIVEWA				
≷। 70	DRIVEWAY TOTAL =	<u>0.11 AC</u> 0.11 AC			
	TOTAL -	0.11 AC		a 2. a	#101 0 2893
2~()				Surveying Engineering	Flamming Kent Kent, WA 99030 Kent, WA 99030 m
\sim				Surve Engir	Fiani Centra F
10		8		• <i>i</i> = -	- 1851 K com
				1	e NE 188 18072 18872 1880 18872
5 2					2 E
		12			A 9807 A 9807
-	A DECEMBER OF				Woodinville 142nd Avenu dinville, WA 9 806.1869
					Woodinville 20210 142nd Avenue NE Woodinville, WA 99072 r 425.806.1869 www
					1 4 N
\wedge	\sim				
5	\sim		20		
1	70				
~					S
~		کر (-	ЦГ Ц	M AM
70			100	3, L	N N
5			~	12;	Hold
70				TEC HOLDINGS 123, LL	MACK TOWNHOME
0 <u>2</u>	2	70	ALC: NO	Ž	Z ^g
-1-				Ē	O T T
	5			Ŷ	
				C	
		/	\wedge	빋	E VE
		17			S a
			10		
5	~				
70					
		\square			NE WASHINGTON
		70		REVISION:	PS 4601 FEET
		< 17		JOB NUMBER	
				DESIGNER: DRAWING BY DATE: 6/23/2	022
	and the second second	ALS		SCALE: AS S	HOWN DN: MARYSVILLE
				FIGUR	
					5.0
				,	

WWHM2012 PROJECT REPORT

Project Name:	Mack	Townhomes	20220608
Site Name:			
Site Address:			
City :			
Report Date:	6/8/20)22	
Gage : Eve	erett		
Data Start :	1948/1	0/01	
Data End : 20	09/09/	30	
Precip Scale:	1.20		
Version Date:	2018/	10/10	
Version : 4.2	.16		

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Onsite Basin Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Flat	<u>acre</u> .6
Pervious Total	0.6
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.6

Element	Flows	To:	
Surface			Interflow

Groundwater

Name : Offsite Access Road Bypass: No

GroundWater: No

LDC Surveying Engineering Planning

Pervious Land Use C, Forest, Flat	<u>acre</u> .15
Pervious Total	0.15
Impervious Land Use	acre
• •	<u> </u>
Impervious Total	0

Element Flows To: Surface	Interflow	Groundwater
MITIGATED LAND USE		
Name : Onsite Basin Bypass: No		
GroundWater: No		
Pervious Land Use C, Pasture, Flat	acre .26	
Pervious Total	0.26	
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	<u>acre</u> 0.25 0.04	
Impervious Total	0.29	
Basin Total	0.55	

Element Flows To:SurfaceInterflowGravel Trench Bed 1Gravel Trench Bed 1

Name : Gravel Trench Bed 1
Bottom Length: 290.00 ft.
Bottom Width: 10.50 ft.
Trench bottom slope 1: 0 To 1
Trench Left side slope 0: 0 To 1
Trench right side slope 2: 0 To 1

Groundwater

LDC Surveying Engineering Planning

Material thickness of first layer: 2 Pour Space of material for first layer: 0.3 Material thickness of second layer: 0 Pour Space of material for second layer: 0 Material thickness of third layer: 0 Pour Space of material for third layer: 0 Infiltration On Infiltration rate: 2 Infiltration safety factor: 1 Wetted surface area On Total Volume Infiltrated (ac-ft.): 114.334 Total Volume Through Riser (ac-ft.): 0.003 Total Volume Through Facility (ac-ft.): 114.338 Percent Infiltrated: 100 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 1.75 ft. Riser Diameter: 12 in.

Element Flows To: Outlet 1 Outlet 2

	Gravel	Trench Bed H	Hydraulic Tab	ole
Stage (feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.069	0.000	0.000	0.000
0.0222	0.069	0.000	0.000	0.141
0.0444	0.069	0.000	0.000	0.141
0.0667	0.069	0.001	0.000	0.141
0.0889	0.069	0.001	0.000	0.141
0.1111	0.069	0.002	0.000	0.141
0.1333	0.069	0.002	0.000	0.141
0.1556	0.069	0.003	0.000	0.141
0.1778	0.069	0.003	0.000	0.141
0.2000	0.069	0.004	0.000	0.141
0.2222	0.069	0.004	0.000	0.141
0.2444	0.069	0.005	0.000	0.141
0.2667	0.069	0.005	0.000	0.141
0.2889	0.069	0.006	0.000	0.141
0.3111	0.069	0.006	0.000	0.141
0.3333	0.069	0.007	0.000	0.141
0.3556	0.069	0.007	0.000	0.141
0.3778	0.069	0.007	0.000	0.141
0.4000	0.069	0.008	0.000	0.141
0.4222	0.069	0.008	0.000	0.141
0.4444	0.069	0.009	0.000	0.141
0.4667	0.069	0.009	0.000	0.141
0.4889	0.069	0.010	0.000	0.141
0.5111	0.069	0.010	0.000	0.141
0.5333	0.069	0.011	0.000	0.141
0.5556	0.069	0.011	0.000	0.141
0.5778	0.069	0.012	0.000	0.141

. . - . .

0.6000 0.6222 0.6444	0.069 0.069 0.069	0.012 0.013 0.013	0.000 0.000 0.000	0.141 0.141 0.141
0.6667	0.069	0.014	0.000	0.141
0.6889 0.7111	0.069 0.069	0.014 0.014	0.000 0.000	0.141 0.141
0.7333	0.069	0.015	0.000	0.141
0.7556 0.7778	0.069 0.069	0.015 0.016	0.000 0.000	0.141 0.141
0.8000	0.069	0.016	0.000	0.141
0.8222 0.8444	0.069 0.069	0.017 0.017	0.000 0.000	0.141 0.141
0.8667	0.069	0.018	0.000	0.141
0.8889	0.069	0.018	0.000	0.141
0.9111 0.9333	0.069 0.069	0.019 0.019	0.000 0.000	0.141 0.141
0.9556	0.069	0.020	0.000	0.141
0.9778 1.0000	0.069 0.069	0.020 0.021	0.000 0.000	0.141 0.141
1.0222	0.069	0.021	0.000	0.141
1.0444 1.0667	0.069 0.069	0.021 0.022	0.000 0.000	0.141 0.141
1.0889	0.069	0.022	0.000	0.141
1.1111	0.069	0.023	0.000	0.141
1.1333 1.1556	0.069 0.069	0.023 0.024	0.000 0.000	0.141 0.141
1.1778	0.069	0.024	0.000	0.141
1.2000 1.2222	0.069 0.069	0.025 0.025	0.000 0.000	0.141 0.141
1.2444	0.069	0.026	0.000	0.141
1.2667 1.2889	0.069 0.069	0.026 0.027	0.000 0.000	0.141 0.141
1.3111	0.069	0.027	0.000	0.141
1.3333	0.069	0.028	0.000	0.141
1.3556 1.3778	0.069 0.069	0.028 0.028	0.000 0.000	0.141 0.141
1.4000	0.069	0.029	0.000	0.141
1.4222 1.4444	0.069 0.069	0.029 0.030	0.000 0.000	0.141 0.141
1.4667	0.069	0.030	0.000	0.141
1.4889 1.5111	0.069 0.069	0.031 0.031	0.000 0.000	0.141 0.141
1.5333	0.069	0.032	0.000	0.141
1.5556	0.069	0.032	0.000	0.141
1.5778 1.6000	0.069 0.069	0.033 0.033	0.000 0.000	0.141 0.141
1.6222	0.069	0.034	0.000	0.141
1.6444 1.6667	0.069 0.069	0.034 0.035	0.000 0.000	0.141 0.141
1.6889	0.069	0.035	0.000	0.141
1.7111 1.7333	0.069 0.069	0.035 0.036	0.000 0.000	0.141 0.141
1.7556	0.069	0.036	0.004	0.141
1.7778	0.069	0.037	0.049	0.141
1.8000	0.069	0.037	0.118	0.141

1.8222 1.8444 1.8667 1.8889 1.9111 1.9333 1.9556 1.9778	0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069	0.038 0.039 0.039 0.040 0.040 0.040 0.041 0.041	0.205 0.306 0.418 0.540 0.670 0.804 0.942 1.080	0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141

Name : Standard Driveways - Units 5-11 Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use DRIVEWAYS FLAT	<u>acre</u> 0.05
Impervious Total	0.05
Basin Total	0.05

Element Flows To:		
Surface	Interflow	Groundwater
Gravel Trench Bed 1	Gravel Trench Bed 1	

Name : Offsite Access Road Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	<u>acre</u> 0.12 0.03
Impervious Total	0.15
Basin Total	0.15

4-14

Element Flows To: Surface Gravel Trench Bed 1

Interflow Gravel Trench Bed 1 Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.75 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.26 Total Impervious Area:0.49

Flow Frequency Return	n Periods for	Predeveloped	. POC #1
Return Period	Flow(cfs)		
2 year	0.0252		
5 year	0.038658		
10 year	0.049037		
25 year	0.063886		
50 year	0.076254		
100 year	0.089779		
Flow Frequency Return	n Periods for	Mitigated.	POC #1
Return Period	Flow(cfs)		
2 year	0		
5 year	0		
10 year	0		
25 year	0		
50 year	0		

	Protection Duration Peaks for Predevelop	ped and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1949	0.025	0.000	
1950	0.026	0.000	
1951	0.023	0.000	
1952	0.018	0.000	
1953	0.015	0.000	
1954	0.082	0.000	
1955	0.032	0.000	
1956	0.029	0.000	

0

100 year

		Surveying
L	DC	Engineering Planning

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1980 1981 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1990 1991 1995 1996 1997 1998 1999 1990 1991 1995 1996 1997 1998	0.035 0.026 0.025 0.024 0.045 0.022 0.036 0.026 0.022 0.013 0.026 0.032 0.077 0.018 0.029 0.021 0.020 0.043 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.030 0.024 0.024 0.019 0.024 0.025 0.030 0.070 0.024 0.017 0.025 0.030 0.070 0.034 0.017 0.018 0.023 0.024 0.015 0.023 0.015 0.025 0.042 0.083 0.015 0.025 0.020 0.015 0.020 0.015 0.020 0.021 0.023 0.015 0.020 0.021 0.021 0.020 0.021 0.020 0.021 0	
2008 2009	0.062 0.019	0.000

#1

nankeu		Predeveloped and Mitigated	. POC
Rank	Predeveloped	Mitigated	
1	0.0835	0.0026	
2	0.0823	0.0000	
3	0.0768	0.0000	
4	0.0704	0.0000	
5	0.0620	0.0000	
6	0.0559	0.0000	
5 7	0.0504	0.0000	
8	0.0448	0.0000	
9	0.0442	0.0000	
9 10			
	0.0432	0.0000	
11	0.0420	0.0000	
12	0.0409	0.0000	
13	0.0364	0.0000	
14	0.0355	0.0000	
15	0.0336	0.0000	
16	0.0324	0.0000	
17	0.0316	0.0000	
18	0.0301	0.0000	
19	0.0299	0.0000	
20	0.0286	0.0000	
21	0.0286	0.0000	
22	0.0262	0.0000	
23	0.0260	0.0000	
24	0.0257	0.0000	
25	0.0256	0.0000	
26	0.0254	0.0000	
27	0.0252	0.0000	
28			
	0.0247	0.0000	
29	0.0246	0.0000	
30	0.0242	0.0000	
31	0.0240	0.0000	
32	0.0237	0.0000	
33	0.0236	0.0000	
34	0.0235	0.0000	
35	0.0230	0.0000	
36	0.0229	0.0000	
37	0.0221	0.0000	
38	0.0219	0.0000	
39	0.0211	0.0000	
40	0.0210	0.0000	
41	0.0201	0.0000	
42	0.0200	0.0000	
43	0.0189	0.0000	
44	0.0185	0.0000	
45	0.0184	0.0000	
45 46	0.0182	0.0000	
47	0.0181	0.0000	
48	0.0181	0.0000	
49	0.0181	0.0000	
50	0.0179	0.0000	
51	0.0177	0.0000	
52	0.0176	0.0000	

53	0.0174	0.0000
54	0.0168	0.0000
55	0.0154	0.0000
56	0.0153	0.0000
57	0.0153	0.0000
58	0.0152	0.0000
59	0.0151	0.0000
60	0.0128	0.0000
61	0.0060	0.0000

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0020	315485	2	0	Pass
0.0021	303721	2	0	Pass
0.0022	292599	2	0	Pass
0.0023	281904	2	0	Pass
0.0024	272066	2	0	Pass
0.0026	262654	2	0	Pass
0.0027	253671	0	0	Pass
0.0028	244902	0	0	Pass
0.0029	236774	0	0	Pass
0.0030	229074	0	0	Pass
0.0031	221374	0	0	Pass
0.0032	214102	0	0	Pass
0.0033	207108	0	0	Pass
0.0034	200263	0	0	Pass
0.0035	193761	0	0	Pass
0.0036	187451	0	0	Pass
0.0037	181377	0	0	Pass
0.0038	175474	0	0	Pass
0.0039	169870	0	0	Pass
0.0040	164587	0	0	Pass
0.0042	159518	0	0	Pass
0.0043	154577	0	0	Pass
0.0044	149764	0	0	Pass
0.0045	145123	0	0	Pass
0.0046	140738	0	0	Pass
0.0047	136461	0	0	Pass
0.0048	132247	0	0	Pass
0.0049	128183	0	0	Pass
0.0050	124248	0	0	Pass
0.0051	120526	0	0	Pass
0.0052	116933	0	0	Pass
0.0053	113468	0	0	Pass
0.0054	110152	0	0	Pass
0.0055	107030	0	0	Pass
0.0057	104014	0	0	Pass
0.0058	101062	0	0	Pass
0.0059	98239	0	0	Pass

0.0060	95522	0	0	Pass
0.0061	92849	0	0	Pass
0.0062	90239	0	0	Pass
0.0063	87673	0	0	Pass
0.0064	85277	0	0	Pass
0.0065	83010	0	0	Pass
0.0066	80764	0	0	Pass
0.0067	78625	0	0	Pass
0.0068	76529	0	0	Pass
0.0069	74412	0	0	Pass
0.0070	72380	0	0	Pass
0.0071	70369	0	0	Pass
0.0073	68487	0	0	Pass
0.0074	66626	0	0	Pass
0.0075	64851	0	0	Pass
0.0076	63118	0	0	Pass
0.0077	61429	0	0	Pass
0.0078	59846	0	0	Pass
0.0079	58284	0	0	Pass
0.0080	56787	0	0	Pass
0.0081	55269	0	0	Pass
0.0082	53836	0	0	Pass
0.0083	52445	0	0	Pass
0.0084	51055	0	0	Pass
0.0085	49772	0	0	Pass
0.0086	48488	0	0	Pass
0.0088	47312	0	0	Pass
0.0089	46114	0	0	Pass
0.0090	44981	0	0	Pass
0.0091	43868	0	0	Pass
0.0092	42799	0	0	Pass
0.0093	41751	0	0	Pass
0.0094	40681	0	0	Pass
0.0095	39719	0	0	Pass
0.0096	38714	0	0	Pass
0.0097	37730	0	0	Pass
0.0098	36767	0	0	Pass
0.0099	35826	0	0	Pass
0.0100	34949	0	0	Pass
0.0101	34072	0	0	Pass
0.0102	33281	0	0	Pass
0.0104	32447	0	0	Pass
0.0105	31613	0	0	Pass
0.0106	30864	0	0	Pass
0.0107	30115	0	0	Pass
0.0108	29388	0	0	Pass
0.0109	28725	0	0	Pass
0.0110	28041	0	0	Pass
0.0111	27378	0	0	Pass
0.0112	26693	0	0	Pass
0.0113	26116	0	0	Pass
0.0114	25474	0	0	Pass
0.0115	24832	0	0	Pass
0.0116	24298	0	0	Pass
0.0117	23699	0	0	Pass

0.0119	23100	0	0	Pass
0.0120	22608	0	0	Pass
0.0121	22073	0	0	Pass
0.0122	21539	0	0	Pass
0.0123	21079	0	0	Pass
0.0124	20587	0	0	Pass
0.0125	20084	0	0	Pass
0.0126	19590	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent Treatment? Water Ouality	Comment Needs	Through	Volume	Volume
vorume	water Quality	Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Gravel Trench Bed 1 POC	N	104.05			N
100.00					
Total Volume Infiltrated		104.05	0.00	0.00	
100.00 0.00	0%	No Treat. Credi	t		
Compliance with LID Standa	rd 8				
Duration Analysis Result =	Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

WWHM2012 PROJECT REPORT

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Roofs Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Flat	<u>acre</u> .5
Pervious Total	0.5
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.5

Element	Flows	To:	
Surface			

Interflow

Groundwater

MITIGATED LAND USE

Name : Roofs Bypass: No

GroundWater: NoPervious Land UseacrePervious Total0Impervious Land Use
ROOF TOPS FLATacre
0.45Impervious Total0.45Basin Total0.45

Element Flows To:

Surface		Interflow	Groundwater
Gravel Trench Bed 2	1	Gravel Trench Bed 1	

Name : Gravel Trench Bed 1 Bottom Length: 140.00 ft. Bottom Width: 17.00 ft. Trench bottom slope 1: 0 To 1 Trench Left side slope 0: 0 To 1 Trench right side slope 2: 0 To 1 Material thickness of first layer: 2.5 Pour Space of material for first layer: 0.3 Material thickness of second layer: 0 Pour Space of material for second layer: 0 Material thickness of third layer: 0 Pour Space of material for third layer: 0 Infiltration On Infiltration rate: 2 Infiltration safety factor: 1 Wetted surface area On Total Volume Infiltrated (ac-ft.): 87.008 Total Volume Through Riser (ac-ft.): 0.003 Total Volume Through Facility (ac-ft.): 87.011 Percent Infiltrated: 100 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 2 ft. Riser Diameter: 12 in. Element Flows To:

Outlet 1 Outlet 2

Stage (feet)			Hydraulic Tal	
0.0000	Area(ac.) 0.054	0.000) Discharge(cfs) 0.000	0.000
0.0278	0.054	0.000	0.000	0.110
0.0556	0.054	0.000	0.000	0.110
0.0833	0.054	0.001	0.000	0.110
0.1111	0.054	0.001	0.000	0.110
0.1389	0.054	0.002	0.000	0.110
0.1667	0.054	0.002	0.000	0.110
0.1944	0.054	0.003	0.000	0.110
0.2222	0.054	0.003	0.000	0.110
0.2500	0.054	0.004	0.000	0.110
0.2778	0.054	0.004	0.000	0.110
0.3056	0.054	0.005	0.000	0.110
0.3333 0.3611	0.054 0.054	0.005 0.005	0.000 0.000	0.110 0.110
0.3889	0.054	0.005	0.000	0.110
0.4167	0.054	0.006	0.000	0.110
0.4444	0.054	0.007	0.000	0.110
0.4722	0.054	0.007	0.000	0.110
0.5000	0.054	0.008	0.000	0.110
0.5278	0.054	0.008	0.000	0.110
0.5556	0.054	0.009	0.000	0.110
0.5833	0.054	0.009	0.000	0.110
0.6111	0.054	0.010	0.000	0.110
0.6389	0.054	0.010	0.000	0.110
0.6667	0.054	0.010	0.000	0.110
0.6944	0.054	0.011	0.000	0.110
0.7222	0.054	0.011	0.000	0.110
0.7500	0.054	0.012	0.000 0.000	0.110
0.7778 0.8056	0.054 0.054	0.012 0.013	0.000	0.110 0.110
0.8333	0.054	0.013	0.000	0.110
0.8611	0.054	0.014	0.000	0.110
0.8889	0.054	0.014	0.000	0.110
0.9167	0.054	0.015	0.000	0.110
0.9444	0.054	0.015	0.000	0.110
0.9722	0.054	0.015	0.000	0.110
1.0000	0.054	0.016	0.000	0.110
1.0278	0.054	0.016	0.000	0.110
1.0556	0.054	0.017	0.000	0.110
1.0833	0.054	0.017	0.000	0.110
1.1111	0.054	0.018	0.000	0.110
1.1389	0.054	0.018	0.000	0.110
1.1667 1.1944	0.054 0.054	0.019 0.019	0.000 0.000	0.110 0.110
1.2222	0.054	0.020	0.000	0.110
1.2500	0.054	0.020	0.000	0.110
1.2778	0.054	0.020	0.000	0.110
1.3056	0.054	0.021	0.000	0.110
1.3333	0.054	0.021	0.000	0.110
1.3611	0.054	0.022	0.000	0.110
1.3889	0.054	0.022	0.000	0.110
1.4167	0.054	0.023	0.000	0.110
1.4444	0.054	0.023	0.000	0.110
1.4722	0.054	0.024	0.000	0.110

1.5000 1.5278 1.5556 1.5833 1.6111 1.6389 1.6667 1.6944 1.7222 1.7500 1.7778 1.8056 1.8333 1.8611 1.8889 1.9167 1.9444 1.9722 2.0000 2.0278 2.0556 2.0833 2.1111 2.1389 2.1667 2.1944 2.2222 2.2500 2.2778 2.3056 2.3333 2.3611 2.3889 2.4167 2.4444 2.4722	0.054 0	0.024 0.025 0.025 0.026 0.026 0.027 0.027 0.027 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.033 0.033 0.033 0.033 0.034 0.035 0.035 0.035 0.036 0.036 0.036 0.037 0.037 0.037 0.038 0.039 0.039 0.040	0.000 0	0.110 0.110
2.4444	0.054	0.040	2.088	0.110
2.4722	0.054	0.040	2.149	0.110
2.5000	0.054	0.041	2.203	0.110

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.5 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.45

POC #1

Flow Frequency Return Periods for Predeveloped. POC #1 Flow(cfs) Return Period 2 year 0.0168 5 year 0.025772 10 year 0.032691 0.042591 25 year 50 year 0.050836 100 year 0.059853 Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0
5 year	0
10 year	0
25 year	0
50 year	0
100 year	0

Stream	Protection Duration	
Annual	Peaks for Predevelo	ped and Mitigated.
Year	Predeveloped	Mitigated
1949	0.017	0.000
1950	0.017	0.000
1951	0.015	0.000
1952	0.012	0.000
1953	0.010	0.000
1954	0.055	0.000
1955	0.022	0.000
1956	0.019	0.000
1957	0.024	0.000
1958	0.017	0.000
1959	0.017	0.000
1960	0.016	0.000
1961	0.030	0.062
1962	0.015	0.000
1963	0.024	0.000
1964	0.017	0.000
1965	0.015	0.000
1966	0.009	0.000
1967	0.017	0.000
1968	0.021	0.000
1969	0.051	0.000
1970	0.012	0.000
1971	0.019	0.000
1972	0.014	0.000
1973	0.013	0.000
1974	0.029	0.000
1975	0.012	0.000
1976	0.012	0.000
1977	0.010	0.000
1978	0.012	0.000
1979	0.034	0.000

20210 142nd Avenue NE • Woodinville, WA 98072 • ph: 425.806.1869 • fx: 425.482.2893 • www.LDCcorp.com

		Surveying
L	DC	Engineering Planning

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	0.016 0.012 0.016 0.027 0.016 0.020 0.047 0.022 0.012 0.012 0.016 0.016 0.012 0.010 0.011 0.016 0.028 0.056 0.010 0.013 0.010 0.013 0.010 0.013 0.010 0.015 0.012 0.020 0.014 0.037 0.029	0.000 0

Stream Protection Duration Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 1 0.0557 0.0618 0.0000 2 0.0549 3 0.0512 0.0000 4 0.0469 0.0000 5 0.0414 0.0000 6 0.0373 0.0000 7 0.0336 0.0000 8 0.0298 0.0000 9 0.0295 0.0000 0.0288 0.0000 10 11 0.0280 0.0000 12 0.0273 0.0000 13 0.0243 0.0000 14 0.0236 0.0000 15 0.0224 0.0000 0.0216 0.0000 16 17 0.0000 0.0211

0.0000

0.0000

0.0000

0.0201

0.0200

0.0191

18

19

20

		Surveying
L	DC	Engineering Planning

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52	0.0191 0.0175 0.0173 0.0172 0.0171 0.0169 0.0168 0.0165 0.0161 0.0161 0.0160 0.0158 0.0157 0.0157 0.0153 0.0152 0.0147 0.0146 0.0141 0.0140 0.0133 0.0126 0.0123 0.0123 0.0121 0.0121 0.0121 0.0119 0.0118 0.0117 0.0117	
49 50	0.0121 0.0119	0.0000
61	0.0040	0.0000

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs) Predev Mit Percentage Pass/Fail

19590	4	0	Pass
16987	4	0	Pass
14662	4	0	Pass
12726	4	0	Pass
10934	4	0	Pass
	16987 14662 12726	16987 4 14662 4 12726 4	16987 4 0 14662 4 0 12726 4 0

0.0105 0.0110 0.0114 0.0118 0.0123 0.0127 0.0131 0.0135 0.0140	9443 8168 7075 6145 5319 4661 4070 3553 3136	4 4 4 4 4 4 4 4 4 4		Pass Pass Pass Pass Pass Pass Pass Pass
0.0144 0.0148 0.0153 0.0157 0.0161 0.0165 0.0170 0.0174 0.0178	2759 2453 2154 1895 1657 1508 1370 1250 1154	4 4 4 4 4 4 4 4 4 4		Pass Pass Pass Pass Pass Pass Pass Pass
0.0183 0.0187 0.0191 0.0195 0.0200 0.0204 0.0208 0.0213	1071 1009 950 888 825 777 733 687	4 4 3 3 3 3 3 3		Pass Pass Pass Pass Pass Pass Pass Pass
0.0217 0.0221 0.0225 0.0230 0.0234 0.0238 0.0243 0.0243	649 622 602 583 561 538 507 488	3 3 3 2 2 2 2 2		Pass Pass Pass Pass Pass Pass Pass Pass
0.0251 0.0255 0.0260 0.0264 0.0268 0.0273 0.0277 0.0281	473 457 440 424 409 394 380 368	2 2 2 2 2 2 2 2 2 2 2 2		Pass Pass Pass Pass Pass Pass Pass Pass
0.0285 0.0290 0.0294 0.0298 0.0303 0.0307 0.0311 0.0315	353 341 333 322 313 304 293 284	2 2 2 2 2 2 2 2 2 2 2 2 2		Pass Pass Pass Pass Pass Pass Pass Pass
0.0320 0.0324 0.0328 0.0333 0.0337	234 276 265 257 241 234	2 2 2 2 2 2	0 0 0 0 0	Pass Pass Pass Pass Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume

Volume	Water Qua	ality			(<u>5</u> ,)	
Infiltrated	Treated		Treatment	Facility	(ac-ft.)	Infiltration
			(ac-ft)	(ac-ft)		Credit
Gravel Trench Bed 1 POC	1	N	79.18			N
100.00						
Total Volume Infiltrated			79.18	0.00	0.00	
100.00 0.00	0 %		No Treat. Cre	edit		
Compliance with LID Standa	ard 8					
Duration Analysis Result =	= Passed					

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: Pervious Pave	ment 20220608
Site Name:	
Site Address:	
City :	
Report Date: 6/22/2022	
Gage : Everett	
Data Start : 1948/10/01	
Data End : 2009/09/30	
Precip Scale: 1.20	
Version Date: 2018/10/10	
Version : 4.2.16	

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Pervious Driveways (Units 1-4 & 12-22) Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Flat	.11
Pervious Total	0.11
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.11

Element	Flows	To:	
Surface			

Interflow

Groundwater

MITIGATED LAND USE

Name : Permeable Pavement 1 Pavement Area: 0.1125 ft. Pavement Length: 70.00 ft.

Pavement Width: 70.00 ft. Pavement slope 1: 0 To 1 **Pavement thickness:** 0.5 Pour Space of Pavement: 0.4 Material thickness of second layer: 0.75 Pour Space of material for second layer: 0.3 Material thickness of third layer: 0 Pour Space of material for third layer: 0 Infiltration On Infiltration rate: 2 Infiltration safety factor: 1 Wetted surface area On Total Volume Infiltrated (ac-ft.): 20.318 Total Volume Through Riser (ac-ft.): 0 Total Volume Through Facility (ac-ft.): 20.318 Percent Infiltrated: 100 Total Precip Applied to Facility: 0 Total Evap From Facility: 1.354 Element Flows To:

Element Flows To: Outlet 1 Outlet 2

	Permeal	ole Pavement	Hydraulic Ta	able
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.112	0.000	0.000	0.000
0.0139	0.112	0.000	0.000	0.226
0.0278	0.112	0.000	0.000	0.226
0.0417	0.112	0.001	0.000	0.226
0.0556	0.112	0.001	0.000	0.226
0.0694	0.112	0.002	0.000	0.226
0.0833	0.112	0.002	0.000	0.226
0.0972	0.112	0.003	0.000	0.226
0.1111	0.112	0.003	0.000	0.226
0.1250	0.112	0.004	0.000	0.226
0.1389	0.112	0.004	0.000	0.226
0.1528	0.112	0.005	0.000	0.226
0.1667	0.112	0.005	0.000	0.226
0.1806	0.112	0.006	0.000	0.226
0.1944	0.112	0.006	0.000	0.226
0.2083	0.112	0.007	0.000	0.226
0.2222	0.112	0.007	0.000	0.226
0.2361	0.112	0.008	0.000	0.226
0.2500	0.112	0.008	0.000	0.226
0.2639	0.112	0.008	0.000	0.226
0.2778	0.112	0.009	0.000	0.226
0.2917	0.112	0.009	0.000	0.226
0.3056	0.112	0.010	0.000	0.226
0.3194	0.112	0.010	0.000	0.226
0.3333	0.112	0.011	0.000	0.226
0.3472	0.112	0.011	0.000	0.226
0.3611	0.112	0.012	0.000	0.226
0.3750	0.112	0.012	0.000	0.226

0.3889 0.4028 0.4167 0.4306 0.4444 0.4583 0.4722 0.4861 0.5000 0.5139 0.5278 0.5417 0.5556 0.5694 0.5833 0.5972 0.6111 0.6250 0.6389 0.6528 0.6667 0.6806 0.6389 0.6528 0.6667 0.6806 0.6944 0.7083 0.7222 0.7361 0.7500 0.7639 0.7778 0.7917 0.8056 0.8194 0.7917 0.8056 0.8194 0.8333 0.8472 0.8611 0.8750 0.8194 0.8333 0.8472 0.8611 0.8750 0.8889 0.9028 0.9167 0.9306 0.9444 0.9583 0.9722 0.9861 1.0000 1.0139 1.0278	0.112 0.	0.013 0.013 0.014 0.014 0.015 0.015 0.015 0.016 0.017 0.017 0.017 0.018 0.019 0.020 0.020 0.020 0.020 0.021 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.027 0.027 0.028 0.029 0.029 0.030 0.031 0.031 0.032 0.035 0.035 0.037 0.037		0.226 0.226
0.9722	0.112	0.035	0.000	0.226
0.9861	0.112	0.035	0.000	0.226
1.0000	0.112	0.036	0.000	0.226
1.0139	0.112	0.037	0.000	0.226

1.1528 1.1667 1.1806 1.1944 1.2083 1.2222 1.2361	0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112	0.043 0.044 0.044 0.045 0.045 0.045 0.046	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.226 0.226 0.226 0.226 0.226 0.226 0.226
1.2361	0.112	0.047	0.000	0.226
1.2500	0.112	0.047	0.000	0.226

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.11 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.112489

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.003696 5 year 0.00567 10 year 0.007192 0.00937 25 year 50 year 0.011184 100 year 0.013168 Flow Frequency Return Periods for Mitigated DOC #1

Flow Frequency	Return Periods for Mitigated. Po	JC #1
Return Period	Flow(cfs)	
2 year	0	
5 year	0	
10 year	0	
25 year	0	
50 year	0	
100 year	0	

		ion Durati for Predeve	on loped and Mitigated.	POC #1
Year	P	redevelope	d Mitigated	
1949		0.004	0.000	
1950		0.004	0.000	
1951		0.003	0.000	
1952		0.003	0.000	
1953		0.002	0.000	

		Surveying
L	DC	Engineering Planning

1954 1955 1956 1957	0.012 0.005 0.004 0.005	0.000 0.000 0.000 0.000
1958 1959	0.004 0.004	0.000
1960 1961	0.003 0.007	0.000
1962 1963	0.003 0.005	0.000
1964	0.004	0.000
1965 1966	0.003 0.002	0.000
1967 1968	0.004 0.005	0.000 0.000
1969	0.011	0.000
1970 1971	0.003 0.004	0.000
1972	0.003	0.000
1973 1974	0.003 0.006	0.000 0.000
1975 1976	0.003 0.003	0.000
1977	0.002	0.000
1978 1979	0.003 0.007	0.000 0.000
1980 1981	0.003 0.003	0.000
1982	0.004	0.000
1983 1984	0.006 0.004	0.000
1985 1986	0.004 0.010	0.000
1987	0.005	0.000
1988 1989	0.003 0.003	0.000
1990 1991	0.003 0.004	0.000
1992	0.003	0.000
1993 1994	0.002 0.002	0.000
1995 1996	0.004 0.006	0.000
1997	0.012	0.000
1998 1999	0.002 0.003	0.000 0.000
2000 2001	0.002 0.001	0.000
2002	0.003	0.000
2003 2004	0.003 0.004	0.000 0.000
2005 2006	0.003 0.008	0.000
2007	0.006	0.000
2008	0.009	0.000

2009 0.003 0.000

	Protection Durat: Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated Mitigated. Foc #1
1	0.0122	0.0000
2	0.0121	0.0000
3	0.0113	0.0000
4	0.0103	0.0000
5	0.0091	0.0000
6	0.0082	0.0000
7	0.0074	0.0000
8	0.0066	0.0000
9	0.0065	0.0000
10	0.0063	0.0000
11	0.0062	0.0000
12	0.0060	0.0000
13	0.0053	0.0000
14	0.0052	0.0000
15	0.0049	0.0000
16	0.0048	0.0000
17	0.0046	0.0000
18	0.0044	0.0000
19	0.0044	0.0000
20	0.0042	0.0000
21	0.0042	0.0000
22	0.0038	0.0000
23	0.0038	0.0000
24	0.0038	0.0000
25	0.0038	0.0000
26	0.0037	0.0000
27	0.0037	0.0000
28	0.0036	0.0000
29	0.0036	0.0000
30	0.0035	0.0000
31	0.0035	0.0000
32	0.0035	0.0000
33	0.0035	0.0000
34 25	0.0034	0.0000
35	0.0034	0.0000
36	0.0034	0.0000
37	0.0032	0.0000
38	0.0032	0.0000
39	0.0031	0.0000
40	0.0031	0.0000
41	0.0029	0.0000
42	0.0029	0.0000
43	0.0028	0.0000
44	0.0027	0.0000
45	0.0027	0.0000
	0.0027	0.0000
46	0.002/	
	0.0027	0.0000
46		

50 51 52	0.0026 0.0026 0.0026	0.0000 0.0000 0.0000
53	0.0026	0.0000
54	0.0025	0.0000
55	0.0023	0.0000
56	0.0022	0.0000
57	0.0022	0.0000
58	0.0022	0.0000
59	0.0022	0.0000
60	0.0019	0.0000
61	0.0009	0.0000

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0018	19590	0	0	Pass
0.0019	16993	0	0	Pass
0.0020	14675	0	0	Pass
0.0021	12741	0	0	Pass
0.0022	10925	0	0	Pass
0.0023	9439	0	0	Pass
0.0024	8173	0	0	Pass
0.0025	7075	0	0	Pass
0.0026	6130	0	0	Pass
0.0027	5313	0	0	Pass
0.0028	4654	0	0	Pass
0.0029	4066	0	0	Pass
0.0030	3551	0	0	Pass
0.0031	3140	0	0	Pass
0.0032	2759	0	0	Pass
0.0033	2447	0	0	Pass
0.0034	2145	0	0	Pass
0.0035	1892	0	0	Pass
0.0035	1656	0	0	Pass
0.0036	1508	0	0	Pass
0.0037	1370	0	0	Pass
0.0038	1250	0	0	Pass
0.0039	1154	0	0	Pass
0.0040	1069	0	0	Pass
0.0041	1009	0	0	Pass
0.0042	950	0	0	Pass
0.0043	888	0	0	Pass
0.0044	825	0	0	Pass
0.0045	777	0	0	Pass
0.0046	733	0	0	Pass
0.0047	686	0	0	Pass
0.0048	648	0	0	Pass
0.0049	622	0	0	Pass
0.0050	602	0	0	Pass

0.0051	583 561	0 0 0	0 0 0	Pass Pass
0.0052 0.0053	538 506	0	0	Pass Pass
0.0054	487	0	0	Pass
0.0055	473	0	0	Pass
0.0056	457	0	0	Pass
0.0057	440	0	0	Pass
0.0058 0.0059	424 408	0 0	0 0	Pass
0.0059	408 394	0	0	Pass Pass
0.0061	380	0	0	Pass
0.0062	368	0	0	Pass
0.0063	353	0	0	Pass
0.0064	341	0	0	Pass
0.0065	333	0	0	Pass
0.0066	322	0	0	Pass
0.0067	313	0	0	Pass
0.0068 0.0068	302 293	0 0	0 0	Pass
0.0069	293 284	0	0	Pass Pass
0.0070	276	0	0	Pass
0.0071	265	0	0	Pass
0.0072	257	0	0	Pass
0.0073	241	0	0	Pass
0.0074	234	0	0	Pass
0.0075	224	0	0	Pass
0.0076	212	0	0	Pass
0.0077	205	0 0	0 0	Pass
0.0078 0.0079	195 187	0	0	Pass Pass
0.0080	177	0	0	Pass
0.0081	166	0	0	Pass
0.0082	160	0	0	Pass
0.0083	150	0	0	Pass
0.0084	146	0	0	Pass
0.0084	135	0	0	Pass
0.0085	128	0	0	Pass
0.0086 0.0087	120 111	0 0	0 0	Pass
0.0088	99	0	0	Pass Pass
0.0089	85	0	0	Pass
0.0090	75	0	0	Pass
0.0091	63	0	0	Pass
0.0092	59	0	0	Pass
0.0093	56	0	0	Pass
0.0094	49	0	0	Pass
0.0095	42 39	0	0	Pass
0.0096 0.0097	39 37	0 0	0 0	Pass Pass
0.0098	36	0	0	Pass
0.0099	30	0	0	Pass
0.0100	28	0	0	Pass
0.0101	26	0	0	Pass
0.0101	20	0	0	Pass

0.0102	16	0	0	Pass
0.0103	14	0	0	Pass
0.0104	9	0	0	Pass
0.0105	6	0	0	Pass
0.0106	5	0	0	Pass
0.0107	4	0	0	Pass
0.0108	4	0	0	Pass
0.0109	3	0	0	Pass
0.0110	3	0	0	Pass
0.0111	3	0	0	Pass
0.0112	3	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent Treatment?	Comment Needs	Through	Volume	Volume
Volume	Water Quality	Needs	IIIIOugii	vorume	vorume
	~~~ 1	Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Permeable Pavement 1 POC	Ν	18.49			Ν
100.00					
Total Volume Infiltrated		18.49	0.00	0.00	
100.00 0.00	0%	No Treat. Credi	t		
Compliance with LID Standa	rd 8				
Duration Analysis Result =	Passed				

#### Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.



WWHM2012 PROJECT REPORT

<pre>Project Name: Perkfilter-1</pre>
Site Name:
Site Address:
City :
<b>Report Date:</b> 6/22/2022
Gage : Everett
<b>Data Start :</b> 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2018/10/10
<b>Version :</b> 4.2.16

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

## PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Flat	<u>acre</u> .15
Pervious Total	0.15
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.15

Element	Flows	To:	
Surface			

Interflow

Groundwater

#### MITIGATED LAND USE

Name : Perkfilter-1 Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	<u>acre</u> 0.12 0.03
Impervious Total	0.15
Basin Total	0.15

# ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.15 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0.15

_				
Flow Frequency	Return	Periods for	: Predevelope	d. POC #1
Return Period		Flow(cfs)		
2 year		0.00504		
5 year		0.007732		
10 year		0.009807		
25 year		0.012777		
50 year		0.015251		
100 year		0.017956		
Flow Frequency	Return	Periods for	Mitigated.	POC #1
Flow Frequency Return Period	Return	Periods for Flow(cfs)	Mitigated.	POC #1
	Return		Mitigated.	POC #1
Return Period	Return	Flow(cfs)	Mitigated.	POC #1
Return Period 2 year	Return	<b>Flow(cfs)</b> 0.013384	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year	Return	Flow(cfs) 0.013384 0.016712	Mitigated.	POC #1
<u>Return Period</u> 2 year 5 year 10 year	Return	Flow(cfs) 0.013384 0.016712 0.019045	Mitigated.	POC #1
Return Period 2 year 5 year 10 year 25 year	Return	Elow(cfs) 0.013384 0.016712 0.019045 0.022145	Mitigated.	POC <b>#1</b>

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.0181 acre-feet On-line facility target flow: 0.029 cfs. Adjusted for 15 min: 0.029 cfs. Off-line facility target flow: 0.0164 cfs. Adjusted for 15 min: 0.0164 cfs.



WWHM2012 PROJECT REPORT

<pre>Project Name: Perkfilter-2</pre>
Site Name:
Site Address:
City :
<b>Report Date:</b> 6/22/2022
Gage : Everett
<b>Data Start :</b> 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2018/10/10
<b>Version :</b> 4.2.16

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

## PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Flat	<u>acre</u> .15
c, fofest, flat	.15
Pervious Total	0.15
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.15

Element	Flows	To:	
Surface			

Interflow

Groundwater

#### MITIGATED LAND USE

Name : Perkfilter-2 Bypass: No GroundWater: No

<u>Pervious Land Use</u> C, Pasture, Flat	<u>acre</u> .02
Pervious Total	0.02
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	<u>acre</u> 0.06 0.02
Impervious Total	0.08
Basin Total	0.1

## ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.15 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.02 Total Impervious Area:0.08

_					
Flow Frequency	Return	Periods	for	Predevelope	ed. POC #1
Return Period		Flow(cfs	3)		
2 year		0.0050	)4		
5 year		0.0077	732		
10 year		0.0098	307		
25 year		0.0127	77		
50 year		0.0152	251		
100 year		0.0179	956		
Flow Frequency	Return	Periods	for	Mitigated.	POC #1
Return Period		Flow(cfs	3)	-	
<u>Return Period</u> 2 year		<b>Flow(cfs</b> 0.0073	<u> </u>	-	
			<u>,</u> 396		
2 year		0.0073	396 304		
2 year 5 year		0.0073	396 304 549	-	
2 year 5 year 10 year		0.0073 0.0093 0.0106	396 304 549 144	-	
2 year 5 year 10 year 25 year		0.0073 0.0093 0.0106 0.0124	396 304 549 144 354	-	

The development has an increase in flow durations from  $1/2\ {\rm Predeveloped}\ 2\ {\rm year}\ {\rm flow}\ {\rm to}\ {\rm the}\ 2\ {\rm year}\ {\rm flow}$ 

or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.01 acre-feet On-line facility target flow: 0.0151 cfs. Adjusted for 15 min: 0.0151 cfs. Off-line facility target flow: 0.0085 cfs. Adjusted for 15 min: 0.0085 cfs. WWHM2012 PROJECT REPORT

Project Name: Perkfilter-3
Site Name:
Site Address:
City :
Report Date: 6/28/2022
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20
Version Date: 2021/08/18
Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

## PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Flat	acre .4
Pervious Total	0.4
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.4

Element	Flows	To:	
Surface			

Interflow

Groundwater

#### MITIGATED LAND USE

Name : Perkfilter-3 Bypass: No GroundWater: No

<u>Pervious Land Use</u> C, Pasture, Flat	<u>acre</u> .14
Pervious Total	0.14
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	<u>acre</u> 0.21 0.05
Impervious Total	0.26
Basin Total	0.4

## ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.4 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.14 Total Impervious Area:0.26

Flow Frequency	Return	Periods f	or	Predevelope	d. POC #1
Return Period		Flow(cfs)	_		
2 year		0.01344			
5 year		0.02061	. 8		
10 year		0.02615	3		
25 year		0.03407	3		
50 year		0.04066	59		
100 year		0.04788	2		
Flow Frequency	Return	Periods f	or	Mitigated.	POC #1
Return Period		Flow(cfs)	_		
2 year		0.02505	4		
_					
5 year		0.03180	13		
5 year 10 year		0.03180 0.03659	-		
-			6		
10 year		0.03659	)6  2		
10 year 25 year		0.03659	6		

Water Quality BMP Flow and Volume for POC #1

4-47



On-line facility volume: 0.0344 acre-feet On-line facility target flow: 0.0483 cfs. Adjusted for 15 min: 0.0483 cfs. Off-line facility target flow: 0.0273 cfs. Adjusted for 15 min: 0.0273 cfs.



## **SECTION 5: CONVEYANCE DESIGN**

Conveyance analysis and design will be included in the construction drainage report to be submitted at a later date.

# Table V-4.5.2(3) Maintenance Standards - Closed Detention Systems(Tanks/Vaults) (continued)

Maintenance Component	Detect	Conditions When Maintenance is Needed	Results Expec- ted When Maintenance is Performed
	Locking Mech- anism Not Work- ing	Bolts into frame have less than 1/2 inch	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one main- tenance per- son.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design stand- ards. Allows maintenance person safe access.
Catch Basins	See "Catch Bas- ins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

# Table V-4.5.2(4) Maintenance Standards - Control Structure/Flow

Restrictor

Maintenance Component	Detect	Condition When Main- tenance is Needed	Results Expected When Maintenance is Performed	
	Debris (Includes	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.	
General		Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.	
		Structure is not in upright position (allow up to 10% from plumb). Connections to outlet pipe	Structure in correct position. Connections to outlet pipe are water tight; structure repaired or replaced and works as	

# Table V-4.5.2(4) Maintenance Standards - Control Structure/FlowRestrictor (continued)

Maintenance	Defect	Condition When Main-	Results Expected When
Component	Defect	tenance is Needed	Maintenance is Performed
		are not watertight and show signs of rust.	designed.
		Any holes - other than designed holes - in the structure.	Structure has no holes other than designed holes.
		Cleanout gate is not water- tight or is missing.	Gate is watertight and works as designed.
Cleanout	Damaged or	Gate cannot be moved up and down by one main- tenance person.	Gate moves up and down eas- ily and is watertight.
Gate	Missing	Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not work- ing properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Sys- tems" (No. 3).	See "Closed Detention Sys- tems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

		Maintenance Standards - Catch Das	Results
Maintenance Component	Detect	Conditions When Maintenance is Needed	Expected When Main-
			tenance is performed
General	Trash & Debris		No Trash or debris loc- ated imme- diately in front of catch basin or on grate open- ing. No trash or debris in the catch basin. Inlet and out- let pipes free of trash or debris. No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 per- cent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks. Frame is sit-

# Table V-4.5.2(5) Maintenance Standards - Catch Basins

		enance Standards - Catch Basins (c	Results
Maintenance Component	Defect	Conditions When Maintenance is Needed	Expected When Main-
			tenance is
			performed
		Frame not sitting flush on top slab, i.e., sep- aration of more than 3/4 inch of the frame from the top slab. Frame not securely attached	ting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	repaired to
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	design stand- ards.
			Pipe is regrouted and secure at basin wall.
		If failure of basin has created a safety, func- tion, or design problem.	Basin replaced or repaired to design stand- ards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No veget- ation block- ing opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No veget- ation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires main- tenance.	Catch basin cover is closed
	•	Mechanism cannot be opened by one main- tenance person with proper tools. Bolts into	Mechanism opens with

# Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Main- tenance is performed
	Working	frame have less than 1/2 inch of thread.	proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure.	Cover can be removed by one main-
		(Intent is keep cover from sealing off access to maintenance.)	tenance per- son.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, mis- alignment, rust, cracks, or sharp edges.	Ladder meets design stand- ards and allows main- tenance per- son safe access.
Metal Grates (If Applic- able)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate open- ing meets design stand- ards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

# Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

# Table V-4.5.2(6) Maintenance Standards - Debris Barriers (e.g., TrashRacks)

Maintenance Com- ponents	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	lijenris	more than 20% of the openings in	Barrier cleared to design flow capacity.
N/lotal	-		Bars in place with no bends more than 3/4

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Per- formed
		potential for erosion to continue. (Recommend a Goeth- echnical engineer be called in to inspect and	
		evaluate condition and recommend repair of condition.	
Emergency Over- flow/Spillway	Emergency Over- flow/Spillway	Only one layer of rock exists above native soil in area five square feet or larger, or any expos- ure of native soil at the top of out flow path of spillway. (Rip-rap on inside slopes need not be	Rocks and pad depth are restored to design stand- ards.
	Erosion	replaced.) See "Side Slopes of Pond"	

# Table V-4.5.2(1) Maintenance Standards - Detention Ponds (continued)

# Table V-4.5.2(2) Maintenance Standards - Infiltration

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expec- ted When Maintenance Is Performed
General		See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Poisonous/Noxious Vegetation	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Contaminants and Pollution	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Rodent Holes	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1)
Storage Area	Sodimont	Water ponding in infiltration pond after rainfall ceases and appropriate	Sediment is removed

Posulte Evice				
Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expec- ted When Maintenance	
			Is Performed	
		time allowed for infiltration. Treat- ment basins should infiltrate Water Quality Design Storm Volume within 48 hours, and empty within 24 hours after cessation of most rain events. (A percolation test pit or test of facility	according to	
		indicates facility is only working at 90% of its designed capabilities. Test every 2 to 5 years. If two inches or more sediment is present, remove).		
	Filled with Sed- iment and Debris	Sediment and debris fill bag more than 1/2 full.	Filter bag is replaced or sys- tem is redesigned.	
Rock Filters	Sediment and Debris	By visual inspection, little or no water flows through filter during heavy rain storms.	Gravel in rock filter is replaced.	
Side Slopes of Pond	Erosion	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).	
Emergency Overflow Spillway and	Tree Growth	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).	
l	Piping	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).	
Emergency Overflow	Rock Missing	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).	
Spillway	Erosion	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).	
Pre-settling Ponds and Vaults	Facility or sump filled with Sediment and/or debris	6" or designed sediment trap depth of sediment.	Sediment is removed.	

# Table V-4.5.2(2) Maintenance Standards - Infiltration (continued)



## **SECTION 6: OPERATIONS AND MAINTENANCE MANUAL**

The proposed storm drainage system consists of buried pipes, catch basins, Perkfilter water quality treatment units, infiltration trenches, pervious pavement driveways, and two Perkfilter catch basin structures. These facilities will require periodic maintenance and inspection. Inspection and maintenance procedures are contained on the following pages.



## **SECTION 7: SPECIAL REPORTS AND STUDIES**

The following studies were conducted in preparation of this Report:

"Geotechnical Engineering Study – Proposed Residential Development, Balam 6-Plex", Earth Solutions Northwest, January, 2021