PRELIMINARY DRAINAGE REPORT

FOR

SAIA Motor Freight Terminal

Marysville, WA 98271

June 23, 2022

Parcel Nos.: APN 30050400300200

Applicant Name: Chris Rapp, P.E. Applicant Address: 1000 2nd Ave, Suite 3900 Seattle, WA 98104 Applicant Telephone: (206) 705-8488 Applicant Email: chris.rapp@kimley-horn.com

Owner Name: Brett Rabe Owner Address: 11465 Johns Creek Parkway, Suite 400 Johns Creek, GA 30097 Owner Telephone: (687) 542-3938 Owner Email: BRabe@saia.com

Project Engineer Name: Chris Rapp, P.E. Project Engineer Address: 1000 2nd Ave, Suite 3900 Seattle, WA 98104 Project Engineer Telephone: (206) 705-8488 Project Engineer Email: chris.rapp@kimley-horn.com

Contact Name: Zachary Kannan, P.E. Contact Address: 1000 2nd Ave, Suite 3900 Seattle, WA 98104 Contact Telephone: (503) 388-6241 Contact Email: zac.kannan@kimley-horn.com

Kimley»Horn

Expect More. Experience Better.

(This sheet was intentionally left blank)

PREPARED FOR:

CITY OF MARYSVILLE COMMUNITY DEVELOPMENT DEPARTMENT 80 COLUMBIA AVENUE MARYSVILLE, WA 98270

PREPARED BY:

KIMLEY-HORN AND ASSOCIATES, INC. 1000 SECOND AVENUE, SUITE 3900 SEATTLE, WA 98101

ZACHARY KANNAN, PE (WA)

Project Engineer's Certification

"I hereby state that this Drainage Control Plan for SAIA Marysville has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community for professional engineers. I understand that the City of Marysville does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me." (This sheet was intentionally left blank)

Disclosure Statement:

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

Table of Contents

1.0 PROJECT OVERVIEW
1.1 SITE LOCATION AND DESCRIPTION
1.2 EXISTING SITE CONDITIONS
1.3 PROPOSED SITE DESIGN
1.4 ENVIRONMENTAL CONSIDERATIONS
1.5 NEW DEVELOPMENT FLOW CHART2
2.0 MINIMUM REQUIREMENT COMPLIANCE
MR1: Stormwater Site Plan Preparation3
MR2: Construction Stormwater Pollution Prevention Plan (SWPPP)
MR3: Source Control of Pollution
MR4: Preservation of Natural Drainage Systems and Outfalls3
MR5: On-site Stormwater Management (OSM)3
MR6: Runoff Treatment5
MR7: Flow Control
MR8: Wetlands Protection
MR9: Operation and Maintenance (O&M)6
3.0 OFF-SITE ANALYSIS
4.0 PERMANENT STORMWATER CONTROL
4.1 SUMMARY SECTION
4.2 PERFORMANCE STANDARDS AND GOALS
4.3 LOW IMPACT DEVELOPMENT FEATURES
4.4 FLOW CONTROL SYSTEM
4.5 RUNOFF TREATMENT SYSTEM
4.6 SOURCE CONTROL
4.7 CONVEYANCE SYSTEM ANALYSIS AND DESIGN
ATTACHMENTS AND APPENDICES
APPENDIX A: MAPS9
ATTACHMENT NO. 1 – VICINITY MAP9
ATTACHMENT NO. 2 – PRE-DEVELOPMENT DRAINAGE AREA MAP9
ATTACHMENT NO. 3 – POST-DEVELOPMENT DRAINAGE AREA MAP9
ATTACHMENT NO. 4 – OFF-SITE ANALYSIS MAP9

ATTACHMENT NO. 5 – FEMA FLOOD INSURANCE RATE MAP (FIRM)	9
ATTACHMENT NO. 6 – SOILS MAP	9
APPENDIX B: CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN (SWPPP)	9
APPENDIX C: SPECIAL REPORTS & STUDIES	9
ATTACHMENT NO. 1 – GEOTECHNICAL REPORT (BY OTHERS)	9
ATTACHMENT NO. 2 – ECOLOGY GULD – OLDCASTLE BIOPOD BIOFILTER	9
APPENDIX D: OPERATIONS & MAINTENANCE	9
ATTACHMENT NO. 1 – OPERATIONS & MAINTENANCE MANUAL	9
ATTACHMENT NO. 2 – MAINTENANCE COVENANT FORM	9
APPENDIX E: WWHM2012 MODEL OUTPUT	9

1.0 PROJECT OVERVIEW

1.1 SITE LOCATION AND DESCRIPTION

The SAIA Freight Terminal project proposes to develop the existing 11.01-acre, light industrial (LI) zoned property into a distribution/warehouse facility with associated office space. The project site is in Marysville, Washington on the northeast corner of State Avenue and 128th Street NE within Snohomish County, see the Vicinity Map in Appendix A. The proposed site will be served by a detention pond for flow control and a proprietary water quality device for runoff treatment. The entire site is intended to be disturbed as there are no critical areas or respective buffer areas that need to remain undisturbed.

1.2 EXISTING SITE CONDITIONS

The existing site is undeveloped and is covered with grass meadows and sparse forested land. The site is flat and experiences shallow ponding. Runoff ultimately exits the site as sheet flow into an offsite vegetated ditch along the southern property limits. The ditch discharges into a culvert which runs south under 128th Street NE and then west under State Avenue. A regional detention facility is located east of the site which the proposed work will not disturb. The site has a notably high ground water table that prevents any practical development to occur at existing grade.

The surrounding area has commercial land use and medium-density single family residential land use. Most of the soils are classified as Custer, fine sandy loam. See the NRCS Soil Survey in Appendix 1, Attachment 6. The site does not contribute to and is not within immediate vicinity of any surface water tributaries.

The project site is not located within a FEMA Special Flood Hazard Area (SFHA) and is mapped on FEMA Flood Insurance Rate Map (FIRM) Panel 53061C0710F, effective date 6/19/2020. The site lies within an unshaded FEMA Zone X. The nearest flood zone is the Zone A floodplain for the Quilceda Creek about 0.25 miles away. See FIRM Panel in Appendix A, Attachment 5.

1.3 PROPOSED SITE DESIGN

The proposed site land coverage can be seen below in Table 1.

Table 1. Summary of Proposed Land Coverage Area		
Land Use Type	Square feet (sf)	Area (ac)
Asphalt	125,356	2.88
Concrete	178,592	4.10
Building/Roof	25,200	0.58
Landscaped/Open Space	122,461	3.45
Total Impervious	329,328	7.56
Total Pervious	150,267	3.45
Total Site	479,595	11.01

Stormwater runoff from most of the site will route into a detention pond through a system of catch basins and underground pipes. The facility is sized to release water at a rate which passes Washington's Department of Ecology's stream protection flow duration requirement. An outlet structure will be designed to match this flowrate for pond. Flow will then be treated for runoff treatment downstream of the detention pond. Treated runoff will then outfall into an existing manhole along State Avenue. A small bypass area (primarily grassed area) will not be captured by the proposed facilities due to depth constraints.

1.4 ENVIRONMENTAL CONSIDERATIONS

No wetlands, natural streams, or fish and wildlife habitat conversation areas were identified within the site's vicinity.

1.5 NEW DEVELOPMENT FLOW CHART

Figure I-3.1 of the SWMMWW below details the project requirements for new development. The site does not have greater than 35% of existing hard surface coverage and the project exceeds 5,000 square feet in new hard surface area, therefore all Minimum Requirements apply.

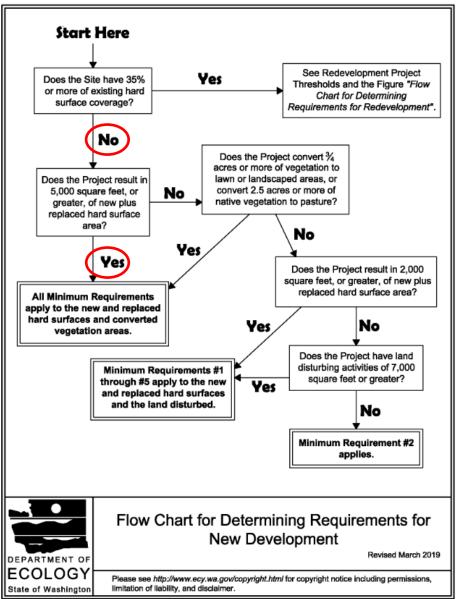


Figure I-3.1: Flow Chart for Determining Requirements for New Development

2.0 MINIMUM REQUIREMENT COMPLIANCE

The Minimum Requirements for new development sites are set forth in I-3.4 of the Washington State Department of Ecology 2019 Stormwater Management Manual for Western Washington (SWMMWW). The project's intended methods of Minimum Requirement compliance are listed below:

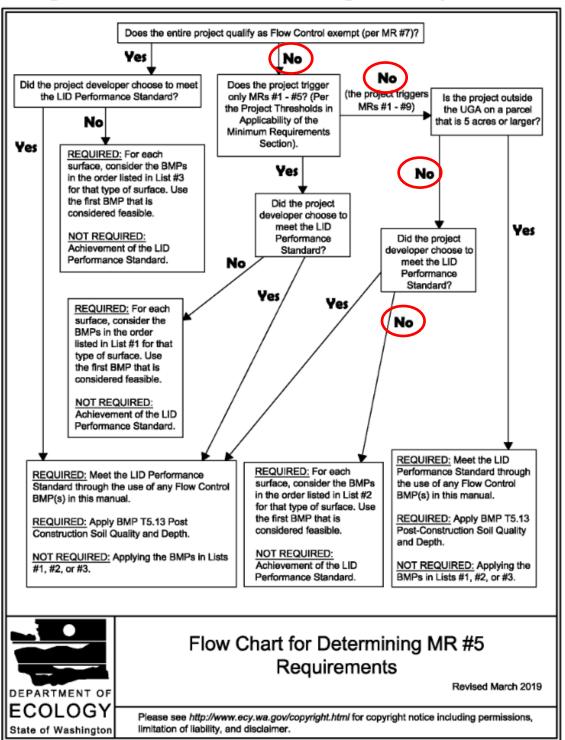
MR1: Stormwater Site Plan Preparation

The project will comply with MR1 by submitting this report. The contents of this Stormwater Site Plan contain all the technical information and analyses required by Ecology for new development stormwater compliance.

MR2: Construction Stormwater Pollution Prevention Plan (SWPPP)

The project will comply with MR2 by preparing a Construction SWPPP. The document will explain and justify the pollution prevention decisions made for the project. Erosion will be controlled, and sediment and other pollutants will be prevented from leaving the site during the construction phase of the project. Fully functional stormwater BMPs will be developed upon completion of construction. Further details can be found within the SWPPP. The full SWPPP will be provided with Final Drainage Report.

MR3: Source Control of Pollution


The project will comply with MR 3 by applying applicable source control BMPs to the site. There are no identified illicit discharges on site beyond those required to treat stormwater runoff as required my MR6. Qualified personnel will conduct routine inspections and assess onsite BMPs.

MR4: Preservation of Natural Drainage Systems and Outfalls

TDA 1 will maintain existing drainage patterns on site. Runoff will naturally flow south across the site. The outfall for TDA 1 will discharge to pipe within State Avenue, 300-feet upstream of natural outfall structure. Western bypass flows will route into the existing vegetated ditch along the western property front, which will discharge into the existing culvert along the southwestern property corner.

MR5: On-site Stormwater Management (OSM)

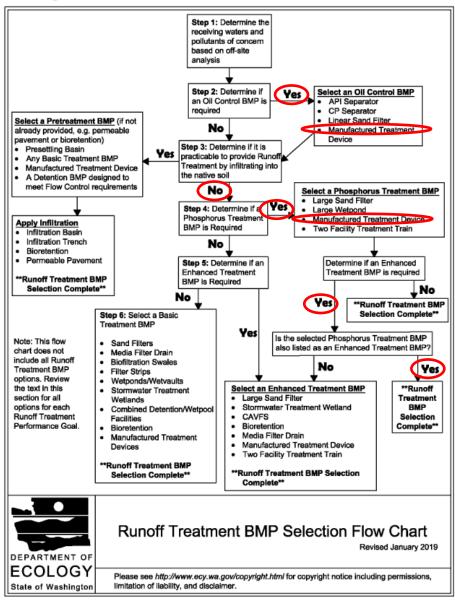

Figure I-3.3 of the SWMMWW below details the compliance requirements for MR5. The project is within the urban growth area (UGA) and chooses not to meet the LID performance standard. The project will implement on-site stormwater management list #2 to the extent feasible. Due to the high water table, bioretention, permeable pavements, and downspout full infiltration are infeasible. The remaining dispersion BMPs are also infeasible because the site will not be able to provide the 2-ft wide transition zones and 10-ft wide vegetated buffers required for dispersion BMPs. Post-Construction Soil Quality and Depth (BMP T5.13) will be provided to lawn and landscaped areas.

Figure I-3.3: Flow Chart for Determining MR #5 Requirements

MR6: Runoff Treatment

Figure III-1.1 of the SWMMWW below details the runoff treatment requirements (MR6) for TDA 1. Oldcastle BioPod BioFilters will be used as a manufactured treatment devices downstream of detention.

Figure III-1.1: Runoff Treatment BMP Selection Flow Chart

MR7: Flow Control

The project will comply with MR7 by matching developed discharge rates and durations to pre-existing rates and durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow (Flow Control Performance Standard). The Flow Control for the entire site is achieved through the detention pond and flow control structure. See Section 4 for more details.

MR9: Operation and Maintenance (O&M)

No wetlands exist onsite. MR8 does not apply.

An operation and maintenance manual for the proposed Runoff Treatment and Flow Control BMPs will be provided with the Final Drainage Report in order to ensure that Stormwater Management BMPs are properly maintained and operated. For all Flow Control and Runoff Treatment BMPs in which the applicant identifies operation and maintenance to be the responsibility of a private party, a declaration of covenant and grant of easement will be provided.

3.0 OFF-SITE ANALYSIS

The initial qualitative off-site analysis was conducted in order to assess the potential off-site water quality, erosion, slope stability, and drainage impacts associated with the project. The analysis extends from the site's immediate vicinity to one-quarter mile downstream of the site's existing outfall. See Appendix A, Attachment 4 for the Off-Site Analysis Map which includes the downstream flow path, tributary drainage areas, and site photos.

The west and south side of the site are bound by vegetated roadside ditches, both with approximate top widths of 3 feet (Figures 1 & 2). The site is extremely flat but ultimately will sheet flow into the southern ditch. The southern ditch also conveys outflow from the offsite regional detention facility east of the project site (Figure 3). The regional detention facility collects water from a neighboring commercial facility and residential properties. The two ditches converge and enter a 12" PVC culvert at the corner of the 128th Street NE and State Avenue, and cross 128th Street NE to the south (Figure 4). On the southern side of 128th Avenue NE, a similar roadway ditch routes residential runoff west. The 12" PVC crossing and the southern ditch tie into a 24" PVC culvert that crosses west across State Avenue. The pipe outfalls into a vegetative roadside ditch along the western shoulder of State Avenue (Figures 6 & 7). The ditch drains to Quilceda Creek, which discharges to Ebey Slough and then to Possession Sound.

No runoff from adjacent properties enter the project site. Discharge from the regional facility does not enter the site. Regional outflow flows along the southern ditch across the property line, and there are no signs of overcapacity or overtopping onto the project site. There were no signs of sedimentation and erosion along the roadside ditches.

Flooding has been a historic issue in the Quilceda watershed. Flooding occurs as a result of the high regional water table in the Marysville Trough. During the fall and winter, the water table is at or near the surface in hydric and Custer soils. If roadside ditches are in conditions that cannot properly drain, there is risk for flooding and roadway overtopping downstream. Continued maintenance of downstream roadway ditches within public right-of-way will help mitigate the risk of flooding.

4.0 PERMANENT STORMWATER CONTROL

4.1 SUMMARY SECTION

Totals for each TDA used in the permanent stormwater design are provided below:

Area to Detention		
Surface Type	Area (ac)	
Converted Vegetation	3.45	
Non-Pollution-Generating Hard Surfaces (NPGHS)	0.58	
Pollution-Generating Hard Surfaces (PGIS)	6.98	
Total	11.01	

Bypass Area	
Surface Type	Area (ac)
Converted Vegetation	TBD
Non-Pollution-Generating Hard Surfaces (NPGHS)	TBD
Pollution-Generating Hard Surfaces (PGIS)	TBD
Total	TBD

4.2 PERFORMANCE STANDARDS AND GOALS

The performance goals used to design the Runoff Treatment BMPs are provided below:

Step 1: Receiving Waters and Pollutants of Concern Based on Off-Site Analysis

The site lies in the Quilceda Watershed which drains to the Ebey Slough. Quilceda Creek was listed as impaired on the State of Washington 1998 303d list for pH, dissolved oxygen, and fecal coliform. The dissolved oxygen levels are attributed to elevated nitrate, nitrite, and phosphorus nutrients.

Step 2: Oil Control Treatment BMP

Oil control is required for the proposed land use of the project. The Proposed land use of the project intends to provide an area for commercial or industrial parking, storage, or maintenance of 25 or more vehicles that are over 10 tons gross weight. Treatment will be provided upstream of the detention facility. Further details regarding oil control will be provided in the Final Drainage report.

Step 3: Infiltrating into the Native Soil

Runoff treatment is not practicable through infiltration of native soils. The site has a high ground water table that prevents efficient infiltration. See Appendix C, Attachment 1 for the full geotechnical report.

Step 4: Phosphorus Treatment BMP

Phosphorus Treatment BMP is required for the site. Treatment will be provided through OldCastle BioPod Biofilters (manufactured treatment device). Ecology's TAPE lists these devices with a General Use Level Designation (GULD) for phosphorus treatment. See Appendix C, Attachment 3 for the full Ecology GULD.

Step 5: Enhanced Treatment BMP

Enhanced Treatment BMP is required for the site. Treatment will be provided through OldCastle BioPod Biofilters (manufactured treatment device). Ecology's TAPE lists these devices with a General Use Level Designation (GULD) for enhanced treatment. See Appendix C, Attachment 3 for the full Ecology GULD.

4.3 LOW IMPACT DEVELOPMENT FEATURES

The project is within the urban growth area (UGA) and chooses not to meet the LID performance standard. The project will implement on-site stormwater management list #2 to the extent feasible. All lawn and landscaped areas will be amended with imported soils in order to meet the requirements of BMP T5.13. These soils will regain stormwater functions in the post development landscape. The organic matter composition will reduce pollution through prevention. The project is within the urban growth area (UGA) and chooses not to meet the LID performance standard for roofs and other hard surfaces. Due to the high groundwater table, bioretention, permeable pavements, and downspout full infiltration are infeasible. The remaining dispersion BMPs are also infeasible because the site will not be able to provide the 2-ft wide transition zones and 10-ft wide vegetated buffers required for dispersion BMPs.

4.4 FLOW CONTROL SYSTEM

The flow control system is a detention pond that spans the entire south side of the site. The pond was designed in two components due to the irregular shape of the available space. The western portion of the pond is 137' x 143' x 6' and the eastern portion of the pond is 612' x 51' x 6'. A full detail of the system will be provided with the Final Drainage Report. A 4' riser with an 18" outfall pipe will release flow at a controlled rate to a flow restrictor. The structure will restrict flows to the Runoff Treatment BMP and bypass the remaining high flows.

4.5 RUNOFF TREATMENT SYSTEM

The Runoff Treatment BMP will be an Oldcastle BioPod Biofilter system. A full detail of the system will be provided with the Final Drainage Report. The structure will receive online post detention flows. The BioPod will be sized to treat the entire 2-year flow rate leaving the detention pond and to bypass up to the 100-year flow rate. Full design details regarding the proposed runoff treatment will be provided in the Final Drainage report.

4.6 SOURCE CONTROL

There are no activities planned on site which require source control; therefore, this requirement is not applicable to the project.

4.7 CONVEYANCE SYSTEM ANALYSIS AND DESIGN

Onsite runoff will be routed through a series of catch basins and underground pipes. Pipes will be designed with adequate cover and capacity that provides sufficient flows and velocities are met. Specific conveyance design calculations will be provided in the Final Drainage report.

Project SAIA Motor Freight Terminal Marysville, WA

ATTACHMENTS AND APPENDICES

APPENDIX A: MAPS

ATTACHMENT NO. 1 – VICINITY MAP

ATTACHMENT NO. 2 – PRE-DEVELOPMENT DRAINAGE AREA MAP

ATTACHMENT NO. 3 – POST-DEVELOPMENT DRAINAGE AREA MAP

ATTACHMENT NO. 4 – OFF-SITE ANALYSIS MAP

ATTACHMENT NO. 5 – FEMA FLOOD INSURANCE RATE MAP (FIRM)

ATTACHMENT NO. 6 - SOILS MAP

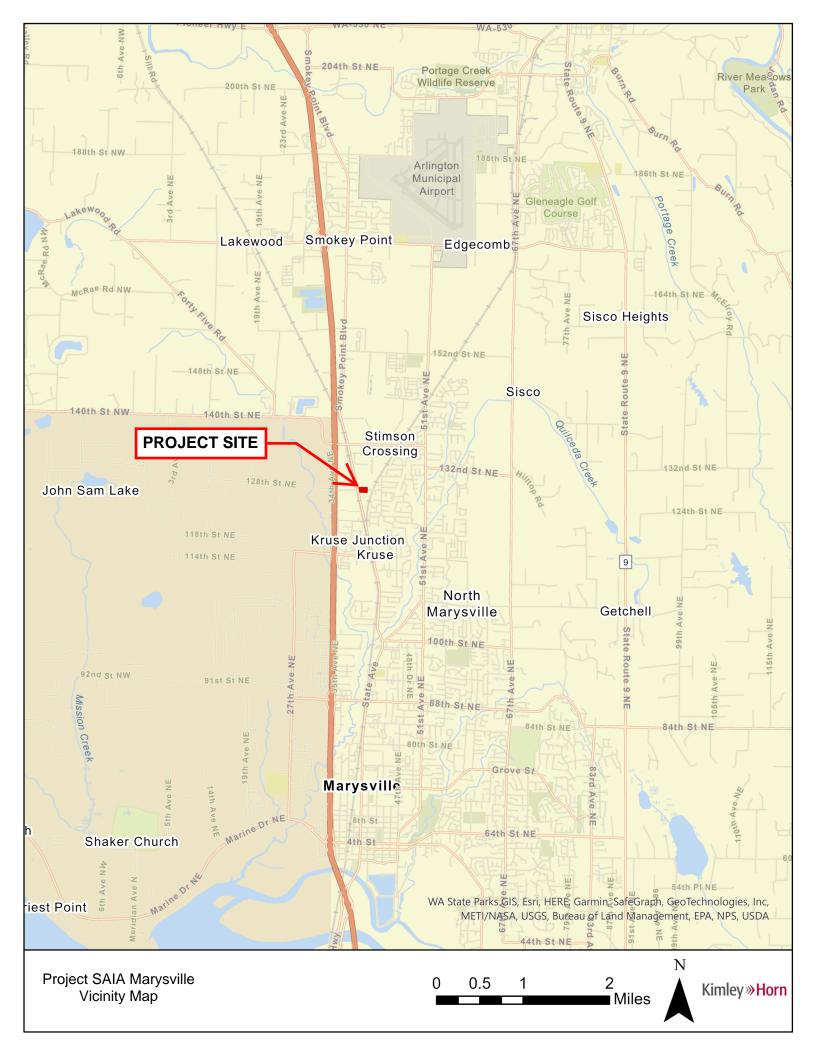
APPENDIX B: CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

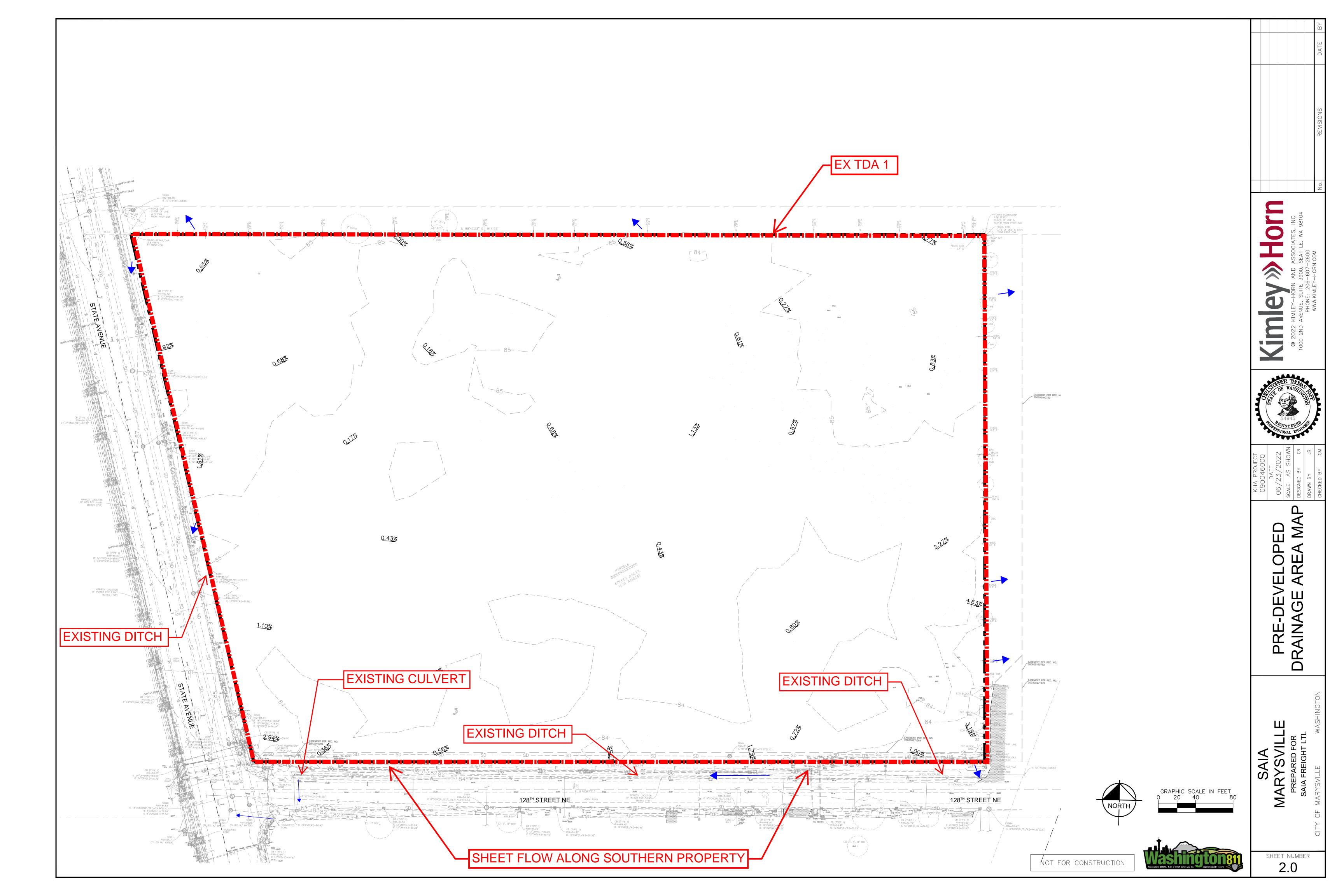
APPENDIX C: SPECIAL REPORTS & STUDIES

ATTACHMENT NO. 1 – GEOTECHNICAL REPORT (BY OTHERS)

ATTACHMENT NO. 2 – ECOLOGY GULD – OLDCASTLE BIOPOD BIOFILTER

APPENDIX D: OPERATIONS & MAINTENANCE


ATTACHMENT NO. 1 – OPERATIONS & MAINTENANCE MANUAL


ATTACHMENT NO. 2 – MAINTENANCE COVENANT FORM

APPENDIX E: WWHM2012 MODEL OUTPUT

Project SAIA Motor Freight Terminal Marysville, WA

APPENDIX A: MAPS

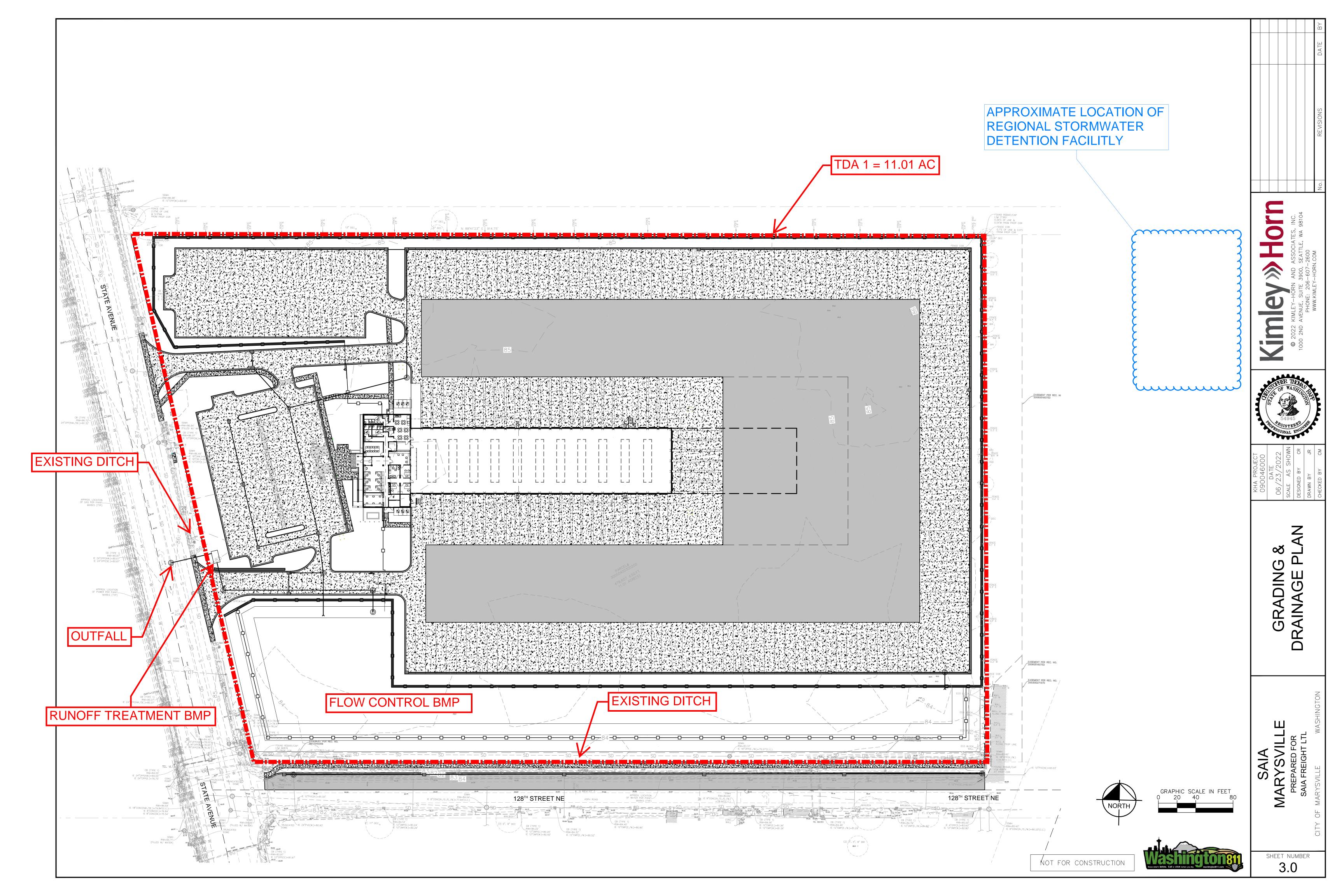


Figure 1. North of 128th Street NE channel downstream

Figure 2. State Avenue channel upstream

Figure 3. Regional detention pond outfall

Figure 4. South of 128th Street NE channel upstream

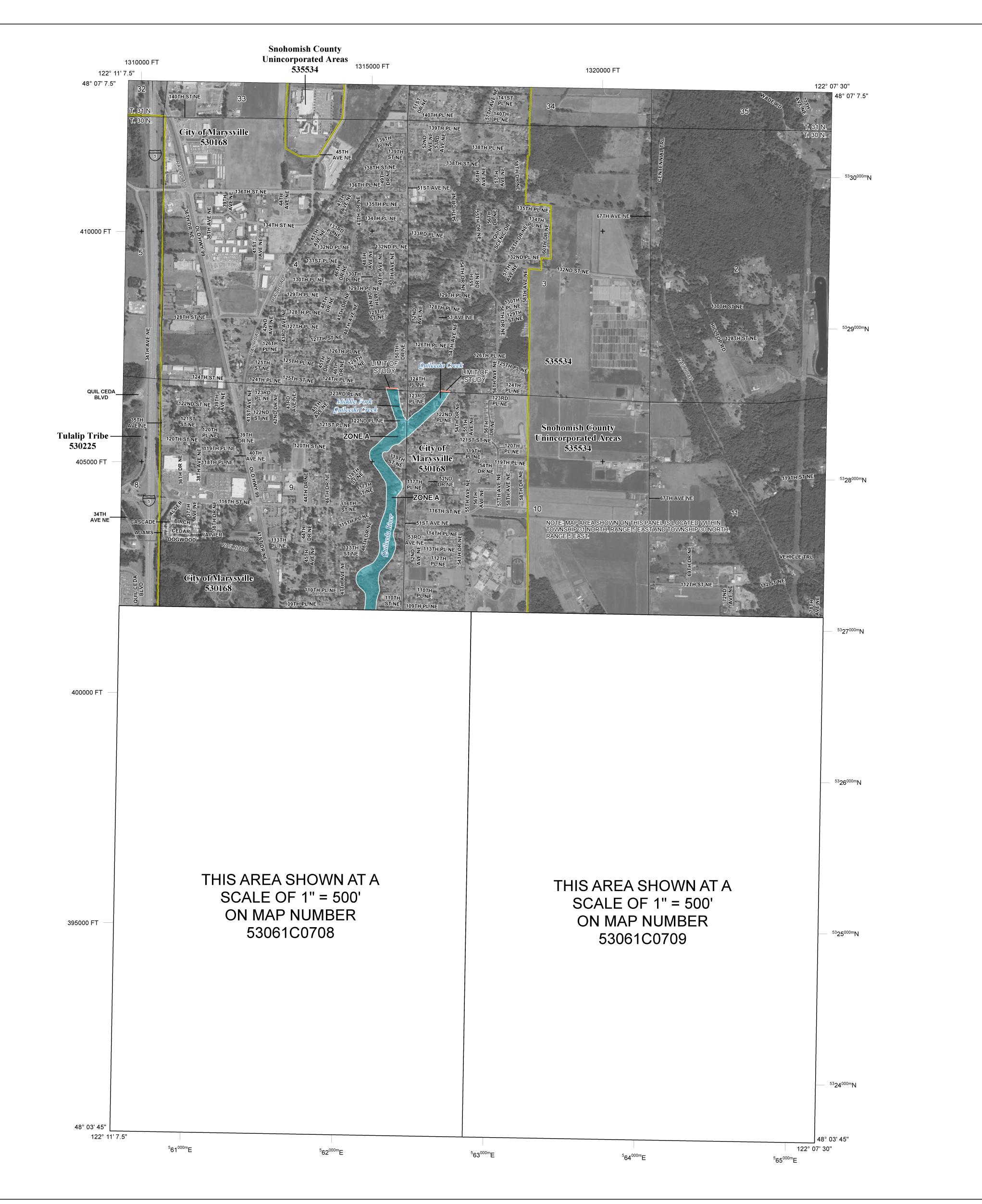

Figure 5. 128th Street NE channels converging

Figure 6. Inlet to channel along State Avenue

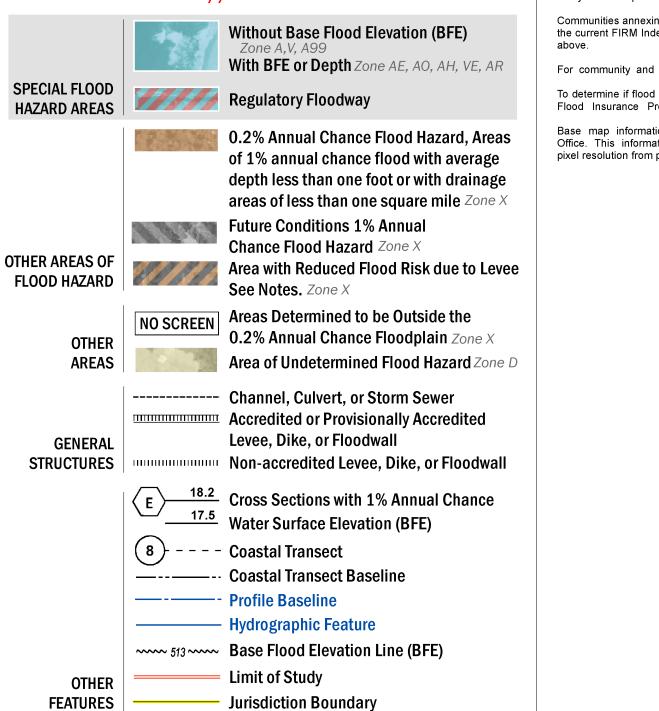


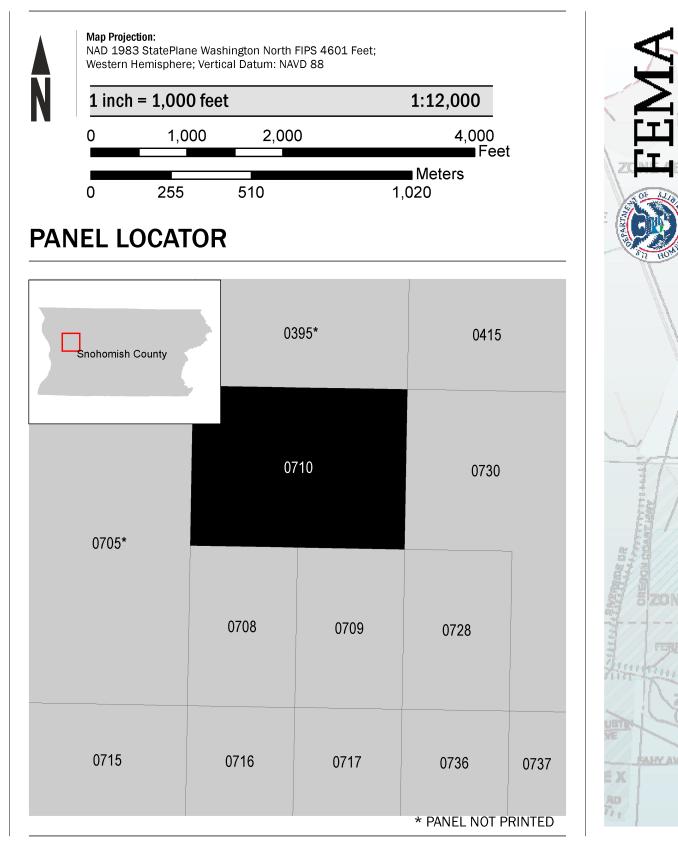
Figure 7. Channel along State Avenue downstream

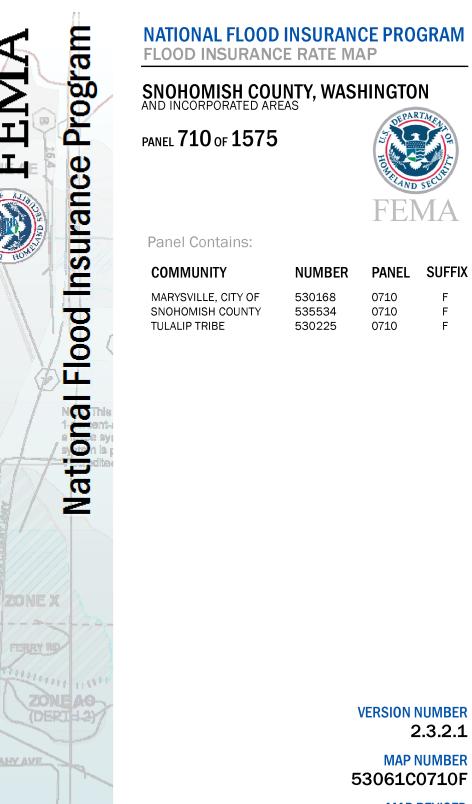
FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING **DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT** HTTPS://MSC.FEMA.GOV

NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at https://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

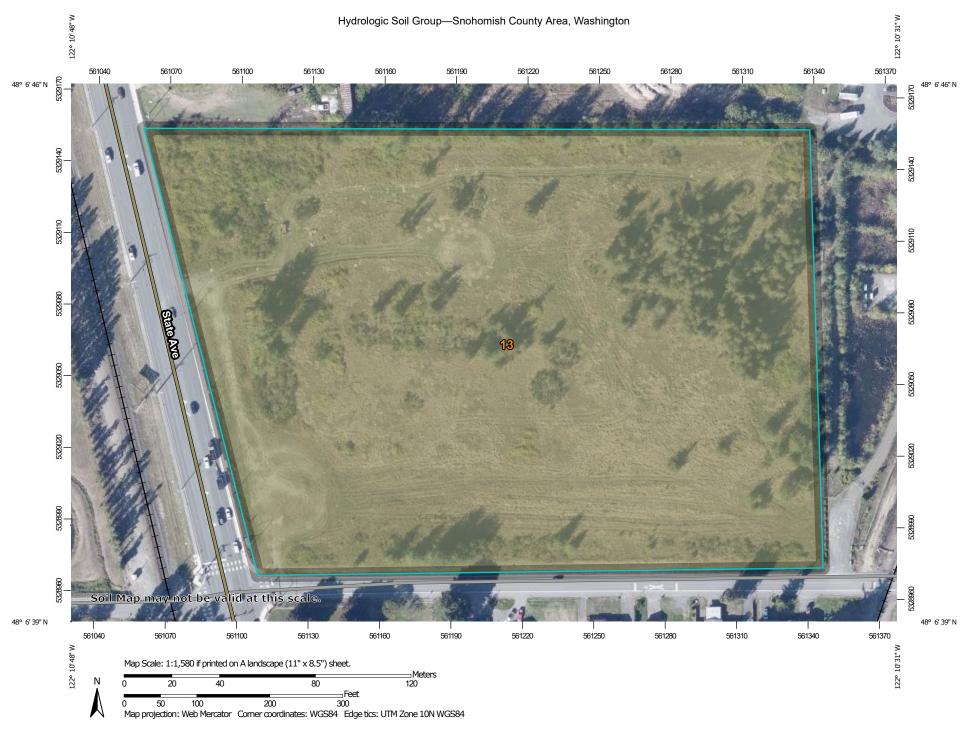

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed


For community and countywide map dates refer to the Flood Insurance Study Report for this jurisdiction.

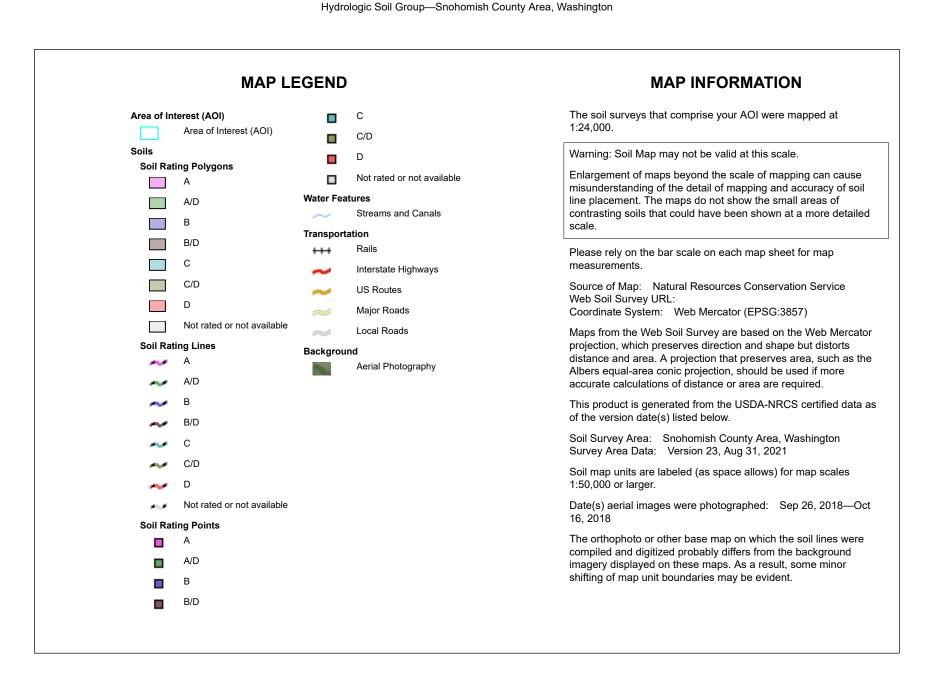
To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Base map information shown on this panel was provided by the USDA-FSA Aerial Photography Field Office. This information was derived from digital orthophotography at a scale of 1:12,000 and 1-meter pixel resolution from photography dated 2009.

SCALE



MAP REVISED JUNE 19, 2020


2.3.2.1

F

F

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
13	Custer fine sandy loam	C/D	11.9	100.0%
Totals for Area of Interest		11.9	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

JSDA

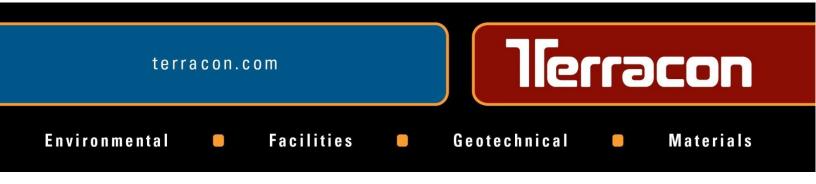
Tie-break Rule: Higher

APPENDIX B: CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

APPENDIX C: SPECIAL REPORTS & STUDIES

Geotechnical Engineering Report

SAIA LTL Freight Terminal Smokey Point Boulevard and 128th Avenue NE Marysville, Washington


December 27, 2021 Terracon Project No. 81215171

Prepared for:

SAIA LTL Freight Johns Creek, Georgia

Prepared by:

Terracon Consultants, Inc. Mountlake Terrace, Washington

December 27, 2021

SAIA LTL Freight 11465 Johns Creek Parkway Suite 330 Johns Creek, Georgia 30097

Attn: Brett Rabe – Sr. Real Estate Manager E: brabe@saia.com

Re: Geotechnical Engineering Report SAIA LTL Freight Terminal Smokey Point Boulevard and 128th Avenue NE Marysville, Washington Terracon Project No. 81215171

Dear Mr. Rabe:

We have developed the geotechnical engineering report for the above referenced project. The study was performed in general accordance with Terracon Proposal No. P81215171 dated October 5, 2021. This report presents the findings of the subsurface explorations and provides geotechnical recommendations concerning earthwork, the design and construction of building foundations, floor slabs, and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

foi
Da Se

Dong-Soo Lee, P.E. Senior Geotechnical Engineer David A. Baska, Ph.D., P.E. Senior Engineering Consultant

Terracon Consultants, Inc. 21905 64th Avenue W Suite 100 Mountlake Terrace, Washington 98043 P (425) 771 3304 F (425) 771 3549 www.terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	2
GEOTECHNICAL CHARACTERIZATION	4
GEOTECHNICAL OVERVIEW	5
SEISMIC CONSIDERATIONS	7
EARTHWORK	
SHALLOW FOUNDATIONS	
FLOOR SLABS	17
LATERAL EARTH PRESSURES	
STORMWATER MANAGEMENT	
PAVEMENTS	
CORROSIVITY	
GENERAL COMMENTS	24

Note: This report was originally delivered in a web-based format. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

REPORT SUMMARY

Topic ¹	Overview Statement ²	
	The project involves the construction of a warehouse with office space and a large parking lot for trucks, trailers and cars at the proposed site which is approximately 11 acres.	
Project Description	The project includes a single-story warehouse building with a footprint of about 19,620 square feet, which includes an office space of about 3,000 square feet. A building expansion is proposed to the east.	
	The parking lot for the proposed development included 100 stalls for trailer trucks, 25 stalls for tractor trucks, 42 stalls for cars/vans and 2 ADA stalls.	
	The project also involves a construction of detention pond which approximately 71,000 square feet.	
	Subsurface conditions prior to early site grading generally consist of the following:	
	1 ft of dark brown, silty sand topsoil, generally upper ¼ ft is sod.	
	 Topsoil is underlain by a 1½ to 2½ ft of loose silty sand. 	
Geotechnical Characterization	 Beneath the silty sand unit exists loose to medium dense sand with variable silt content to about 35 to 40 ft, and is further underlain by dense sand to roughly 61¹/₂ ft. 	
	 Silty sand and sandy silt interbeds between 20 and 61¹/₂ ft. 	
	 Groundwater existed as shallow as 4½ feet below the initial ground surface. 	
	 Remove upper 1 ft of topsoil, including thicker portions of sod and organic-rich soils. 	
Earthwork	 Existing granular soils can be reused for engineered fill, but may be moisture sensitive due to an appreciable fines content (percent passing the #200 sieve). 	
	 Near-surface soils may be moisture sensitive and could become unstable when exposed to excessive moisture and/or disturbance. 	
	 Utility trenching may require dewatering efforts due to the shallow groundwater table. 	
	Summary of foundation recommendations (Refer to Shallow Foundations)	
Shallow Foundations	Allowable bearing pressures for shallow foundation:	
	Structural fill: 2,500 psf	
	Expected static settlement: < 1 inch total, < $\frac{1}{2}$ inch differential	
	Detect and remove sod as noted in Earthwork	

Geotechnical Engineering Report

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

Topic ¹	Overview Statement ²
	Post-liquefaction settlement of 2 to $4\frac{1}{2}$ inches is estimated for the design- level event. The differential settlement is anticipated to be about $2\frac{1}{2}$ inches.
Liquefaction	Based on communication with the structural engineer, the post-liquefaction settlement estimated is tolerable for the proposed structure constructed as spread footings with seismic ties .
	We understand both asphalt and concrete pavement sections will be considered. Based on assumed traffic (please verify the value in pavement section of Project Description), the minimum standard pavement sections for a 20-year design life are as follows:
	 Minimum 12 inches of compacted subgrade with minimum CBR of 12
Pavements	• 4-in. AC over 9-in. granular base for flexible pavement – employee parking
	 5-in. AC over 8-in. granular base for flexible pavement – truck travel lanes, trailer parking areas
	• 6 ¹ / ₂ -in. PCC over 8-in. granular base for rigid pavement – dock aprons
	 7½-in. PCC over 8-in. granular base for rigid pavement – truck travel lanes, entry/exit aprons
General Comments	This section contains important information about the limitations of this geotechnical engineering report.
	eviewing this report as a pdf, the topics above can be used to access the appropriate section simply clicking on the topic itself.
2. This summary i	is for convenience only. It should be used in conjunction with the entire report for design

2. This summary is for convenience only. It should be used in conjunction with the entire report for design purposes.

Geotechnical Engineering Report

SAIA LTL Freight Terminal Smokey Point Boulevard and 128th Avenue NE Marysville, Washington

Terracon Project No. 81215171 December 27, 2021

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed SAIA LTL Freight Terminal to be located at Smokey Point Boulevard and 128th Avenue NE in Marysville, Washington. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Site preparation and earthwork
- Foundation design and construction
- Floor slab design and construction
- Corrosivity

- Groundwater conditions
- Seismic considerations and liquefaction
- Lateral earth pressures
- Stormwater management
- Pavement design and construction

The geotechnical engineering scope of services for this project included the advancement of 5 soil borings to depths of approximately $16\frac{1}{2}$ to $61\frac{1}{2}$ feet below existing grades (bgs), 8 test pits to depths ranging from approximately 5 to 7 feet bgs, and cone penetration testing (CPT) to depths ranging from 102 to $102\frac{1}{2}$ ft.

Maps showing the site and exploration locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring and test pit logs and as separate graphs in the **Exploration Results** section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

ltem	Description	
Parcel Information	The project is located at the northeast corner of the intersection of Smokey Point Boulevard and 128th Street NE in Marysville, Washington. This location is approximately ¼ mile east of Interstate 5, and approximately 9 miles north of downtown Everett. Lot Size: 11 acres Latitude: 48.11196, Longitude: -122.17771 (see Site Location)	
Existing Improvements	The site is currently undeveloped outside of a small paved parking lot near the northeast corner of the lot.	
Current Ground Cover	Grass, brush and trees	
Existing Topography	Approximately 4 feet of elevation change across the site with higher elevations generally along the northern and eastern property lines. In the southeast region of the site (TP-08) is about 2 to 3 feet higher than other area. Central region of the site (B-P08p and B-B03) is about 3 to 4 feet lower than other area. Further discussion is presented in the Geotechnical Characterization.	
Geology	Our review of geologic maps indicates subsurface conditions which consist of Pleistocene continental glacial drift comprised primarily of outwash sand with variable gravel, silt and clay content (i.e., Marysville Sand Member).	

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description	
Information Provided	Email communication with SAIAConceptual plan was provided by Ware Malcomb	
	 Structural loading condition was provided by email from Structural Design Group dated November 11, 2021 	

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

ltem	Description		
Project Description	The proposed development is located on a 11 acres lot and will include a new office and warehouse building surrounded by truck and trailer parking. The proposed dimensions of the building are about 60 feet by 277 feet for the warehouse and 60 ft by 50 ft for the office building. Pavement around the building may include a concrete apron; asphalt pavement is proposed elsewhere in the trucking yard.		
	Street access into the site would be provided from Smokey Point Boulevard which bounds the west side of the site. A detention basin is proposed along the southern end of the site.		
Proposed Structure	Warehouse building with a footprint of about 16,620 ft ² and an office building of about 3,000 ft ² . The warehouse will be elevated about 4 feet from the surrounding grade to accommodate truck loading and unloading.		
	Both structures are slab-on-grade (non-basement).		
	The proposed warehouse is to be constructed of concrete tilt-up panels founded on strip and spread footings with seismic ties.		
Building Construction	The proposed office building will consist of a one-story, wood or metal frame structure supported on strip and spread footings connected with seismic ties. Floors would be concrete slab-on-grade.		
Finished Floor Elevation	Not known at this time, assumed to be at or near existing grades following the early grading contract.		
	The loading information was provided to Terracon by the structura engineer:		
Maximum Loads	Columns: 100 kips		
	Walls: 5 kips per linear foot (klf)		
	Slabs: 150 pounds per square foot (psf)		
Grading/Slopes	Based on the November 2021 email from D.F. Chase, fill will be placed to raise grades by roughly 3 to 4 feet. In some areas along the parking area, there will be cuts of 1 ft or less and roughly 1 to 2 feet of fill will be placed.		

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

Item	Description	
Pavements	 Paved drive lanes and parking will be constructed on approximately 8 acres of the parcel. We understand 20-year designs for both rigid (concrete) and flexible (asphalt) pavement sections will be considered. Vehicular data was not provided. Based on similar project experience, we assumed the following truck data (please confirm): Anticipated traffic for the proposed facility: Autos/light trucks: 100 vehicles per day Light delivery and trash truck: 15 vehicles per week Tractor-trailer trucks (5-axle, 80 kip) Heavy Duty: 50 vehicles/day, Medium Duty: 25 vehicles/day Tractor-trailer trucks (3-axle, 45 kip) Heavy Duty: 100 vehicles/day, Medium Duty: 50 vehicles/day 	
Applicable Building Code and Minimum Design Load Standard	2018 International Building Code (2018 IBC) 2016 ASCE Standard ASCE/SEI 7-16 (ASCE 7-16)	
Estimated Start of Construction	Building construction in 2022	

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description	
1	Topsoil	Topsoil Silty Sand (SM), with sod and organics, roots and rootlets, very dark brown, moist	
2	Silty Sand	Brown to dark brown, moist, loose to medium dense, with organics, fine to medium grained	

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

	3	Sand	Mostly poorly graded sand with varying quantities of silt, trace gravel, loose to dense, fine to medium grained, occasional medium to coarse grained and well graded sand
--	---	------	---

Existing fill was not encountered in our explorations. However, **if any existing fill is encountered during construction**, this material should be removed prior to fill placement.

Groundwater Conditions

Groundwater was encountered in all borings and test pits. The level of groundwater in the boreholes was observed while drilling and after completion or installation of wells. The water levels observed in the explorations can be found on the boring logs and test pit logs in **Exploration Results** and are summarized below.

Exploration	Approximate Depth to Groundwater		
Number	While Drilling/Excavating ^{1, 2}	After Drilling or Observed in Well ^{1, 3}	
B-B01	6½		
B-B03	5		
B-P08p		41/2	
B-D13p	6½	6	
B-D14p	6½	6	
TP-01	6½		
TP-02	6		
TP-03	6½		
TP-04	6		
TP-05	6		
TP-06	6½		
TP-07	7		
TP-08	5		

1. Feet below ground surface.

2. Inferred from change in sample moisture or from evidence of free water on drilling equipment.

3. Measured using water level indicator.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs.

The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

GEOTECHNICAL OVERVIEW

The site is underlain primarily by loose to medium dense sand to about 40 feet with shallow groundwater, **rendering the site susceptible to liquefaction during a design-level seismic event.** The free-field estimate of liquefaction-induced settlement is estimated to be about 2 to 4½ inches for the upper 50 feet of the soil profile. The resulting differential settlement is estimated to be roughly 2½ inches.

Our understanding through discussion with the structural engineer is that this amount of settlement is tolerable by both the office building and warehouse structures. Therefore, shallow foundations can be founded on compacted structural fill. We recommend that spread footings be connected with seismic ties. Further discussion is provided in the Seismic Considerations section.

Due to the shallow water table, **we recommend grading be limited** to only what is necessary to level the site. The upper 1 foot of the topsoil unit is largely sod and **should be removed** prior to subgrade preparation for site preparation and paving. The soils present at the subgrade elevation are **likely to be moisture sensitive due** to the significant fines content and **may become unstable** when exposed to excessive moisture and/or disturbance such as construction traffic. Therefore, we recommend earthwork be performed during warmer and drier months to facilitate more workable site conditions.

Additionally, effective drainage should be completed early in the construction sequence and maintained after construction to avoid potential issues. If grading is performed during the winter months, **an increased risk for possible undercutting and replacement** of unstable subgrade will persist. Additional site preparation recommendations, including subgrade improvement and fill placement, are provided in the **Earthwork** section.

The **Shallow Foundations** section addresses support of the building bearing on native soil or compacted structural fill. The slab-on-grade support of the building is discussed in the **Floor Slabs** section of this report.

Seasonal high groundwater levels should be considered in the civil engineering design for site grading, utility construction, and pavements. A flexible pavement system and a rigid pavement system are recommended for this site. The **Pavements** section addresses the design of pavement systems.

Specific conclusions and recommendations regarding these geotechnical considerations, as well as other geotechnical aspects of design and construction of foundation systems and other earthwork related phases of the project are outlined in the following sections.

The recommendations contained in this report are based upon the results of field and laboratory testing (presented in **Exploration Results**), engineering analyses, and our current understanding of the proposed project. ASTM and Washington State Department of Transportation (WSDOT) specification codes cited herein respectively refer to the current manual published by the American Society for Testing & Materials and the current edition of the *Standard Specifications for Road, Bridge, and Municipal Construction, (M41-12)*.

SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on the Seismic Design Category. Site Class is required to determine the Seismic Design Category for a structure. The Site Class is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Chapter 20 of ASCE 7.

Description	Value
International Building Code (IBC) Site Classification ^{1, 2}	F ²
Site Latitude	48.111944
Site Longitude	-122.17686
S _S – Short Period Spectral Acceleration	1.085 g
S ₁ – 1-Second Period Spectral Acceleration	0.387 g
F _a – Short Period Site Coefficient for Site Class D ²	1.066
F _v -1-Second Period Site Coefficient for Site Class D ²	-
PGA - ASCE 7, Peak Ground Acceleration	0.46 g
F _{PGA} – Peak Ground Acceleration Site Coefficient	1.14

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

Description	Value
1. The IBC requires a site profile extending to a depth of 100 feet for se	ismic site classification. Borings were
extended to a maximum depth of 51 ½ feet and later CPT probes we	re extended to over 100 feet. The site
properties below the boring depth to 51 ½ feet were estimated based	on the CPT probes.

Site Class F applies to any profile having (1) soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays and collapsible weakly cemented soils, (2) at least 10 feet of peats and/or highly organic clays, (3) at least 25 feet of very high plasticity clays, or (4) at least 120 feet of soft to medium stiff clays.

2. These values were obtained using online seismic design maps and tools provided by OSHPD (<u>https://seismicmaps.org/</u>) on 11/02/2021. ASCE 7 allows site coefficients F_a and F_y to be determined assuming that liquefaction does not occur for structures with fundamental periods of vibration less than 0.5 second. Based on the results of the exploration program, Site Class D may be used to determine the values of F_a and F_y. The fundamental period of vibration for the structure should be verified by the structural engineer.

Surface-Fault Rupture

The hazard of damage from onsite fault rupture appears to be low based on review of the USGS Earthquake Hazards Program Quaternary Faults and Folds Database available online (https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf 88412fcf) accessed on November 2, 2021. The closest mapped fault is the Southern Whidbey Island fault zone, which lies approximately 13 miles to the southwest of the proposed project site.

Liquefaction

Liquefaction is the phenomenon where **saturated soils develop high porewater pressures during seismic shaking and lose their strength characteristics.** This phenomenon generally occurs in areas of high seismicity, where groundwater is shallow and loose granular soils or relatively non-plastic fine-grained soils are present. We evaluated liquefaction triggering using the simplified procedure originally developed by Seed and Idriss (1971) and refined over time with additional case histories (e.g., Boulanger and Idriss, 2014). The CLiq software developed by GeoLogismiki and used by Terracon on this project applies the simplified procedure to CPT data and also allows for computation of post-liquefaction settlements.

Based on our analyses, the hazard of liquefaction of the site soils is **moderate to high** during a design level earthquake and is most likely to trigger between 3 feet and 25 feet below the ground surface, with some thinner zones between the depths of 25 and 50 feet (i.e., interbedded silt and sand). We estimate approximately **2 to 41**/₂ **inches** of post-liquefaction settlement. From this total settlement, roughly **21**/₂ **inches** of differential settlement is inferred. Based on our understanding of the regional geology and the alluvial and post-glacial deposits of the site, we anticipate the liquefaction hazard is sitewide.

We evaluated the lateral spread hazard using the multilinear regression equations of Youd et al. (2002). The site appears to have a ground slope of about $\frac{1}{2}$ percent. Given this ground slope

condition, we estimate lateral spread displacements of about 12 inches. If a topographic survey of the site indicates a greater slope, we should be contacted to review our estimate of lateral spread displacements.

Based on our discussion with the structural engineer, the free-field, post-seismic, displacements associated with the design seismic event are deemed tolerable for the proposed structures. We recommend that spread footings be connected with seismic ties and any utilities connected to the proposed structures be designed with flexible connections to reduce damage during a seismic event. Foundation recommendations are provided in the Shallow Foundations section.

EARTHWORK

Earthwork will include clearing and grubbing, removal of the topsoil unit and organic-rich soils encountered above silty sand unit, fill placement for raising site grades, and excavations for foundation elements and utility trenches. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations include critical quality criteria as necessary to render the site in the state considered in our geotechnical engineering evaluation for foundations, floor slabs, and pavements.

Site Preparation

Prior to placing fill, existing vegetation, topsoil (sod and root mats), and organic-rich soils should be removed. Complete stripping of the sod portion of the topsoil should be performed in all nonlandscape areas. Based on our explorations, the depth of stripping is approximately 12 inches, but greater stripping depths may be encountered during earthwork construction. This material should be either wasted from the site or re-used in proposed landscape areas.

The subgrade should be proofrolled with an adequately loaded vehicle such as a fully-loaded tandem-axle dump truck prior to placing fill. The proofrolling should be performed under the observation of the Geotechnical Engineer. Areas excessively deflecting under the proofroll should be delineated and subsequently addressed by the Geotechnical Engineer. Excessively wet or dry material should either be removed or moisture conditioned and recompacted.

Fill Material Types

Fill required to achieve design grade should be classified as structural fill and common fill. again, Stratum was not used earlier. Model layer 1 is topsoil that cannot be used as fill is material used below, or within 10 feet of structures and apertures, pavements, and constructed slopes. Common fill is material used to achieve grade outside of these areas. Earthen materials used for structural, common, and free-draining granular fill should meet the following material property requirements: SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

Fill Type	Recommended Materials	Acceptable Location for Placement
Structural Fill	 9-03.9(1) Ballast ¹ 9-03.9(3) Crushed Surfacing Base Course ¹ 9-03.12(1)A Gravel Backfill for Foundations Class A ¹ 9-03.14(1) Gravel Borrow ¹ On-site Soils (i.e. Model Layer 3) ^{2, 3} 	Beneath and adjacent to structural slabs, foundations, building appurtenances, and pavement subgrades
Common Fill	Section 9-03.14(3) <i>Common Borrow</i> ¹ On-site Soils (i.e. Model Layer 3) ^{2 ,3}	Grade filling, utility trench backfill outside the building foundation and appurtenances
Free-Draining Granular Fill	Structural Fill ⁴ 9-03.12(2) <i>Gravel Backfill for Walls</i> ¹ 9-03.12(4) <i>Gravel Backfill for Drains</i> ¹	Backfilling in wet weather, drainage layers for walls, sump drains, footing drains ⁵

- 1. WSDOT Standard Specifications.
- 2. Structural and common fill should consist of approved materials free of organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the Geotechnical Engineer for evaluation prior to use on this site.
- 3. May contain local areas of higher fines content that could make this material moisture sensitive. Particles with a nominal diameter greater than about 3 in. should be removed.
- 4. Material provided must be specified to be less than 5-percent passing the #200 sieve for the portion of material passing the #4 sieve.
- 5. Minimum particle size must be greater than drain pipe perforations.

Fill Compaction Requirements

Structural and common fill should meet the following compaction requirements.

ltem	Structural and Free-Draining Fill	Common Fill
Maximum Lift Thickness	 8 inches or less in loose thickness when heavy, self-propelled compaction equipment is used 4 to 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used 	Same as Structural fill

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

ltem	Structural and Free-Draining Fill	Common Fill
Minimum95% of max. below foundations and floor slabs and within 1 foot of finished pavement subgrade190% of max. above foundations and more than 1 feet below finished pavement subgrade		90% of maximum dry density
Water Content Range 1Typically, within 2% of optimumAs required to act requirements		As required to achieve min. compaction requirements

Utility Trench Backfill

All trenches should be wide enough to allow for compaction around the haunches of the pipe, or material such as pea gravel (provided this is allowed by the pipe manufacturer) should be used below the spring line of the pipes to eliminate the need for mechanical compaction in this portion of the trenches. If water is encountered in the excavations, it should be removed prior to fill placement. **Due to the higher groundwater table, utility trenching may be difficult without implementing dewatering efforts.** Trench side walls may be unstable if excavations are performed below the groundwater.

Placement and compaction of recommended materials for utility trench backfill should be in accordance with the recommendations presented herein for **Earthwork**. In our opinion, the initial lift thickness should not exceed one foot unless recommended by the manufacturer to protect utilities from damage by compacting equipment. Light, hand-operated compaction equipment in conjunction with thinner fill lift thicknesses may be utilized on backfill placed above utilities if damage resulting from heavier compaction equipment is of concern. **Flexible connections for utilities that pass through building foundations are recommended to reduce potential stress associated with differential settlement that may occur between the building foundation and the improvements located outside of the building footprint.**

Grading and Drainage

All grades must provide effective drainage away from the building during and after construction and should be maintained throughout the life of the structure. Due to the high groundwater table, raising of site grades was performed during the early grading efforts described previously. The contractor should **maintain effective grading** to promote drainage throughout construction. Water retained next to the building **can result in soil movements greater than those discussed** in this report. Greater movements can result in unacceptable differential floor slab and/or foundation movements, cracked slabs and walls, and roof leaks.

Gutters and downspouts should be routed into tightline pipes that discharge either directly into a municipal storm drain or to an alternative drainage facility. Splash-blocks should also be considered below hose bibs and water spigots.

Site grades should be established such that surface water is directed away from foundation and pavement subgrades to prevent an increase in the water content of the soils. Adequate positive drainage diverting water from structures, open cuts, and slopes should be established to prevent erosion, ground loss, and instability. Locally, flatter grades may be necessary to transition ADA access requirements for flatwork.

After building construction and landscaping, **final grades should be verified** to document effective drainage has been achieved. Where paving or flatwork abuts the structure a maintenance program should be established to effectively seal and maintain joints and prevent surface water infiltration.

Earthwork Construction Considerations

Shallow excavations for the proposed structure are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of floor slabs. **Construction traffic over the completed subgrades should be avoided.** The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations.

Water collecting over, or adjacent to, construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted, prior to floor slab construction. If excessive deflection on the native subgrade is encountered in haul roads, a geotextile and/or quarry spalls may be necessary.

The high groundwater table may affect excavation efforts, especially for utility trenches, if advanced through to roughly 6 feet or more feet below the current ground surface. If this is the case, the high groundwater table and permeable sand will make dewatering efforts difficult and impact trench wall stability.

Site development should avoid or limit trenching and excavation depths that will encounter groundwater to the extent practical. If this is unavoidable, the contractor may want to consider installing groundwater monitoring wells (**piezometers**).

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, and/or state regulations. Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations.

Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

On-going earthwork efforts to raise site grades have been observed under the observation of Terracon. Future earthwork efforts should continue to be monitored under the observation of Terracon. **Each lift of compacted fill should be tested** for density and water content, evaluated, and reworked as necessary until the specified degree of compaction is achieved prior to placement of additional lifts.

In areas of foundation excavations, the bearing subgrade should be evaluated by the Terracon. In the event that unanticipated conditions are encountered, Terracon should recommend mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

Wet Weather Earthwork

The near-surface soils have variable fines content based on our visual observations and lab testing and **are considered moisture sensitive**. The soils will exhibit moderate erosion potential and may be transported by running water. Silt fences and other best-management practices will be necessary to control erosion and sediment transport during construction.

The suitability of soils used for structural fill depends primarily on their grain-size distribution and moisture content when they are placed. As the fines content (the soil fraction passing the U.S. No. 200 Sieve) increases, soils become more sensitive to small changes in moisture content.

Soils containing more than about 5 percent fines (by weight) cannot be consistently compacted to a firm, unyielding condition when the moisture content is more than 2 percentage points above or below optimum. Optimum moisture content is the moisture content at which the maximum dry density for the material is achieved in the laboratory by the ASTM D1557 test procedure.

If inclement weather or in situ soil moisture content prevents the use of on-site material as structural fill, we recommend use of materials specified in **Fill Material Types** for free-draining granular fill. Additionally, stockpiled soils should be protected with polyethylene sheeting anchored to withstand local wind conditions and preservation of the soil's moisture content.

SHALLOW FOUNDATIONS

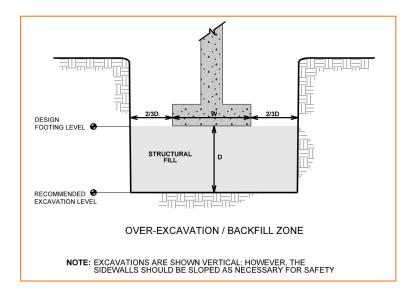
If the site has been prepared in accordance with the requirements noted in **Earthwork**, the following design parameters are applicable for shallow foundations. We recommend that spread footings be connected with seismic ties.

Design Parameters – Compressive Loads

Description	Spread Footing with Seismic Ties	Wall Footing					
Net allowable bearing pressure ^{1, 2}							
Structural fill	 2,500 psf 	 2,500 psf 					
Minimum dimensions	24 inches	24 inches					
Minimum thickness of structural fill under the footings	24 inches	24 inches					
Minimum embedment below finished grade ³	18 inches	18 inches					
Approximate static total settlement from foundation loads for condition specified ⁴	<1 inch	<1 inch					
Estimated static differential settlement from foundation loads ⁴	About 2/3 of to	otal settlement					
 Ultimate passive pressure ^{5, 6} Compacted structural fill 	400 pcf (equivalent fluid unit weight)						
Ultimate coefficient of sliding friction ⁷	0.4	40					

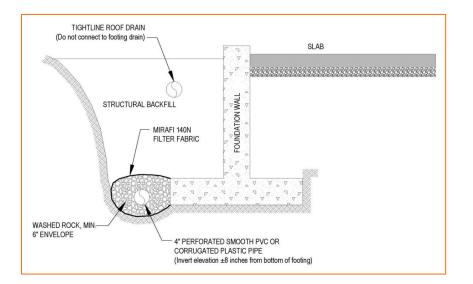
SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

Description Spread Footing with Seismic Ties	Wall Footing
--	--------------


- The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. An appropriate factor of safety has been applied. These bearing pressures can be increased by 1/3 for transient loads unless those loads have been factored to account for transient conditions. Assumes that exterior grades are relatively level adjacent to the structure.
- 2. Values provided are for maximum loads noted in **Project Description**.
- 3. For frost protection and to reduce the effects of seasonal moisture variations in the subgrade soils. For perimeter footing and footings beneath unheated areas. For sloping ground, maintain depth below the lowest adjacent exterior grade within 5 horizontal feet of the structure.
- 4. Differential settlements are as measured over a span of 50 feet. We should review the settlement estimates after the foundation plan has been prepared by the structural engineer.
- 5. Use of passive earth pressures require the sides of the excavation for the spread footing foundation to be nearly vertical and the concrete placed neat against these vertical faces or that the footing forms be removed and compacted structural fill be placed against the vertical footing face.
- 6. Passive resistance in the upper 2 feet of the soil profile should be neglected.
- 7. Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions.

Foundation Construction Considerations

As noted in **Earthwork**, the footing excavations should be evaluated under the observation of the Geotechnical Engineer. The base of all foundation excavations should be free of water and loose soil, prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. **Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.**


If unsuitable bearing soils are encountered at the base of the planned footing excavation, the excavation should be extended deeper to suitable soils. Over-excavation for structural fill placement below footings should be conducted as shown below. The over-excavation should be backfilled up to the footing base elevation as recommended in the Earthwork section.

Foundation Drains

We recommend the building be encircled with a perimeter foundation drain to collect exterior seepage water. This drain should consist of a 4-inch diameter perforated pipe within an envelope of washed rock, extending at least 6 inches on all sides of the pipe. The washed rock should conform to WSDOT Section 9-03.12(4), Gravel Backfill for Drains or 9-03.12(5), Gravel Backfill for Drywells. The washed rock envelope should be wrapped with filter fabric (such as Mirafi 140N, or equal) to reduce the migration of fines from the surrounding soil. Ideally, the drain invert would be installed no more than 8 inches above or below the base of the perimeter footings. The perimeter foundation drain **should not** be connected to roof downspout drains and should be constructed to discharge into the site storm water system or other appropriate outlet. These recommendations are summarized in the figure below:

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

FLOOR SLABS

Design parameters for floor slabs assume the requirements for **Earthwork** have been followed. Specific attention should be given to positive drainage away from the structure and positive drainage of the aggregate base beneath the floor slab.

Floor Slab Design Parameters

Item	Description
1	Minimum 6 inches of capillary break material (see Fill Material Types for Free-Draining Granular Fill)
Floor Slab Support ¹	Compacted to at least 95% of maximum dry density (ASTM D 1557) Minimum 18 inches of structural fill under the capillary break is recommended.
Estimated Modulus of Subgrade Reaction ²	 115 pounds per square inch per inch (psi/in) for point loads 30 psi/in for distributed loads

 Floor slabs should be structurally independent of building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.

2. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in **Earthwork**, and the floor slab support as noted in this table. It is provided for point loads. For large area loads, assume the modulus of subgrade reaction for distributed loads.

The use of a vapor retarder is recommended beneath concrete slabs on grade covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture.

llerracon

GeoReport.

When conditions warrant the use of a vapor retarder, the slab designer should **refer to ACI 302 and/or ACI 360** for procedures and cautions regarding the use and placement of a vapor retarder.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. **For additional recommendations refer to the ACI Design Manual**. Joints or cracks should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

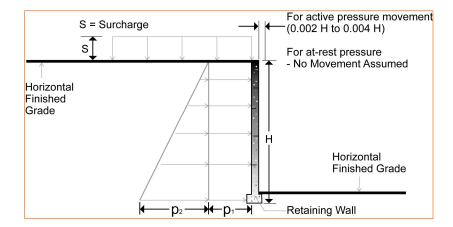
Where floor slabs are tied to perimeter walls or turn-down slabs to meet structural or other construction objectives, our experience indicates differential movement between the walls and slabs will likely be observed in adjacent slab expansion joints or floor slab cracks beyond the length of the structural dowels. The Structural Engineer should account for potential differential settlement through use of sufficient control joints, appropriate reinforcing or other means.

Floor Slab Construction Considerations

Finished subgrade within and for at least 10 feet beyond the floor slab should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until floor slabs are constructed. If the subgrade should become damaged or desiccated prior to construction of floor slabs, the affected material should be removed and structural fill should be added to replace the resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the floor slab support course.

Terracon should observe the condition of the floor slab subgrades immediately prior to placement of the floor slab support course, reinforcing steel and concrete. Attention should be paid to high traffic areas that were rutted and disturbed earlier, and to areas where backfilled trenches are located.

LATERAL EARTH PRESSURES


Design Parameters

Structures with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to values indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown.

Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement and is commonly used for basement walls, loading dock walls, or other walls restrained at the top.

The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls (unless stated).

Lateral Earth Pressure Design Parameters											
Earth Pressure Condition ¹	Coefficient for Backfill Type ²	Uniform Pressure ^{3,} 4, 5 p ₁ (psf)	Effective Fluid Pressures (psf) ^{2, 4, 5, 6}								
Active (Ka)	0.28	(0.28)S	(35)H								
At-Rest (Ko)	0.44	(0.44)S	(55)H								
Passive (Kp)	3.2		(400)H								
Seismic		(7)H – Active (12)H – At-Rest									

1. For active earth pressure, wall must rotate about base, with top lateral movements 0.002 H to 0.004 H, where H is wall height. For passive earth pressure, wall must move horizontally to mobilize resistance.

- 2. Uniform, horizontal backfill, compacted to at least 92 percent of the ASTM D 1557 maximum dry density, rendering a maximum unit weight of 125 pcf.
- 3. Uniform surcharge, where S is surcharge pressure.
- 4. Loading from heavy compaction equipment is not included.
- 5. No safety factor is included in these values.
- 6. Values are in addition to static earth pressures.

STORMWATER MANAGEMENT

Terracon attempted to perform infiltration testing per the Snohomish County Drainage Manual (Jan. 2016); however, **due to the presence of shallow groundwater**, **the test could not be completed** as recommended by the manual. The high ground water table **renders the site infeasible** for infiltration of stormwater.

Another option for stormwater management appears to be onsite storage with discharge into the city sewer system. An onsite detention vault would likely need to be anchored at the base due to uplift pressures from the shallow groundwater. Should this option be considered by SAIA, Terracon can provide recommendations for the design of ground anchors via an addendum to this geotechnical engineering report.

PAVEMENTS

General Pavement Comments

Pavement designs are provided for the traffic loading and pavement design life presented in **Project Description**. A critical aspect of pavement performance is site preparation. Pavement designs, noted in this section, must be applied to the site, which has been prepared as recommended in the **Earthwork** section. The recommended designs of Asphaltic Concrete (AC) and Portland Cement Concrete (PCC) pavements are based on the 1993 AASHTO guidelines.

Design Traffic

Standard equivalent single-axle loads (ESALs) were estimated using the 1993 *Guideline for Design of Pavement Structures* by the American Association of State Highway and Transportation Officials (AASHTO, 1993). **Based on the assumed (please confirm) traffic loading conditions,** a 20-yr design life, an annual growth rate of 1%, and the facility operating 5 days per week, we estimate a maximum design loading of 500,000 flexible ESALs.

Site-specific vehicular data was not provided by the client. We assumed the vehicular data based on our experience with similar projects. If traffic volumes will exceed the assumed values, Terracon should be notified to provide pavement sections designed for higher levels of traffic.

Pavement Design

Based on laboratory testing of near-surface soils and imported fill, we have selected a design CBR value of 12. Any imported or borrow source fill placed below the proposed pavements should have a CBR value of at least 12.

Flexible Pavement

The binder grade for AC (asphalt) mixes was verified using the online version of LTPPBind.

Recommended Minimum Flexible (asphalt) Pavement Section											
	Thickne	ss (inches)									
Layer	Employee Parking	Truck Drive Lanes	Material Specification								
Compacted Subgrade ¹	12	12	Suitable subgrade soil (see Earthwork) compacted to 95% of Modified Proctor Maximum Dry Density; -2 to +2% Optimum Moisture Content								
Crushed Aggregate Base	9	8	WSDOT: 9-03.9(3) Base Course								
Hot Mix Asphalt ²	4	5	WSDOT: 9-03.8(2) ¾-inch HMA with PG 64H-22 asphalt binder								

1. May vary based on observations following proof-rolling.

2. Asphalt surface course only.

Rigid Pavement

We recommend that Portland cement concrete (PCC) pavement be used for entrance and exit apron sections, dumpster pads, loading dock aprons, and any other areas where extensive wheel maneuvering or repeated channelized loading are expected.

	Recomme	ended Minimum Rigid	(concrete) Pavement Sections
	Thic	kness (inches)	
Layer	Dock Apron	Truck Drive Lanes, Entry/Exit Aprons	Material Specification
Compacted Subgrade ¹	12	12	Suitable subgrade soil (see Earthwork) compacted to 95% of Modified Proctor Maximum Dry Density; -2 to +2% Optimum Moisture Content
Crushed Aggregate Base	8	8	WSDOT: 9-03.9(3) Base Course
PCC ²	6½	71/2	Minimum 28-day unconfined compressive strength of 4,000 pounds per sq. inch (psi)

1. May vary based on observations following proof-rolling.

2. Unreinforced PCC surface with 1" smooth dowels at mid-depth of transverse joints.

Adequate reinforcement and number of longitudinal and transverse control joints should be placed in the rigid pavement in accordance with ACI requirements. Smooth dowels should be placed at mid-depth of transverse joints for truck drive lanes. For dock aprons, the joints parallel to the dock face shall be considered to be the transverse direction.

Although not required for structural support, the base course layer is recommended to help reduce potential for slab curl, shrinkage cracking, subgrade "pumping" through joints, and provide a working surface for paving. These thicknesses assume the subgrade is properly prepared and compacted as noted above.

Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer.

The minimum pavement sections outlined above were determined based on post-construction traffic loading conditions. These pavement sections **do not account** for heavy construction traffic during development. A partially constructed structural section that is subjected to heavy construction traffic can result in pavement deterioration and premature distress or failure.

Our experience indicates this pavement construction practice can result in pavements that will **not perform** as intended. Considering this information, several alternatives are available to mitigate the impact of heavy construction traffic prior to pavement construction, including:

- Using thicker sections to account for the construction traffic after paving,
- Using some method of soil stabilization to improve the support characteristics of the pavement subgrade,
- Routing heavy construction traffic around paved areas, or
- Delaying paving operations until as near the end of construction as is feasible.

Dumpster Pads: The dumpster pad should be large enough to support the wheels of the truck which will bear the load of the dumpster. The **minimum thickness** of PCC pavement should be 6 inches of concrete (min. 4,000 psi strength) and underlain by a minimum of 8 inches of crushed aggregate base course (use WSDOT 9.03.9(3)).

Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration.

In addition, the pavement subgrade **should be graded** to provide positive drainage within the granular base section. Appropriate sub-drainage or connection to a suitable daylight outlet should be provided to remove water from the granular subbase.

We recommend drainage improvements be included at the bottom of crushed aggregate base (when used) at the storm structures to aid in removing water that may enter this layer. Drainage could consist of small diameter weep holes excavated around the perimeter of the storm structures. The weep holes should be excavated at the elevation of the crushed aggregate base and soil interface.

The excavation should be covered with crushed aggregate encompassed in Mirafi 140NL, or an approved equal, which will aid in reducing the amount of fines that enter the storm system.

Pavement Maintenance

The pavement sections represent **minimum recommended thicknesses** and, as such, periodic maintenance should be anticipated. Therefore, **preventive maintenance should be planned and provided for** through an on-going pavement management program. Maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment.

Maintenance consists of both localized maintenance (e.g. crack and joint sealing and patching) and global maintenance (e.g. surface sealing). Preventive maintenance is usually the priority when implementing a pavement maintenance program.

Additional engineering observation is recommended to determine the type and extent of a costeffective program. Even with periodic maintenance, some movements and related cracking may still occur and repairs may be required. Pavement performance is affected by its surroundings. In addition to providing preventive maintenance, the civil engineer should consider the following recommendations in the design and layout of pavements:

- Final grade adjacent to paved areas should slope down from the edges at a minimum 3%.
- Subgrade and pavement surfaces should have a minimum 2% slope to promote proper surface drainage.
- Install joint sealant and seal cracks immediately.
- Seal all landscaped areas in or adjacent to pavements to reduce moisture migration into subgrade soils.

CORROSIVITY

The table below lists the results of laboratory soluble sulfate, soluble chloride, electrical resistivity, and pH testing. The laboratory test results are attached at the end of this report. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

		Test Results ¹								
Analyte Tested	Test Method	B-B03	TP-5	TP-8						
		2.5 to 6 ft	2.5 to 3 ft	2.5 to 3 ft						
рН	AWWA 4500H	7.1	6.6	6.5						
Water Soluble Sulfates (mg/kg)	ASTM C1580	77	56	28						
Sulfides (mg/kg)	AWWA 4500-S D	0	0	0						
Chlorides (mg/kg)	ASTM D512	45	28	25						
Red-Ox ²	AWWA 2580	718	717	725						
Total Salts (mg/kg)	AWWA 2540	83	84	52						
Resistivity (ohm-cm)	ASTM G57	18430	27160	51410						

AWWA = American Water Works Association

ASTM = American Society for Testing and Materials

1. Depth below existing grades prior to early grading activities.

2. Reduction-Oxidation potential (positive values indicates an oxidizing environment).

The fill soils placed as part of the early grading efforts are generally sand with silt and silty sand with little to no-plasticity. **Resistivity and corrosivity testing were not performed on the imported fills**. If this testing is desired, **a soil sample can be obtained at any time prior to final design** and tested at our laboratory.

GENERAL COMMENTS

This report (including all attachments) should be read in its <u>entirety</u>. Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction.

Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken. Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended.

Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others.

If changes in the nature, design, or location of the project are planned, **our conclusions and recommendations shall not be considered valid** unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

Responsive Resourceful Reliable

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Exploration Type	Exploration Number	Exploration Depth ¹	Location			
	TP-01	6½				
-	TP-02	6				
-	TP-03	6 1⁄2				
Teet Dite	TP-04	6				
Test Pits	TP-05	6 1/2	Parking/driveway area			
	TP-06	6 1/2				
	TP-07	7				
	TP-08	TP-08 5				
Qail Danin na	B-B01	41 ½	Discussed by italians and a			
Soil Borings	B-B03	61 ½	Planned building area			
	B-P08p	16 ½	Parking/driveway area			
Groundwater	B-D13p	16 ½	Proposed Detention			
Monitoring Well	B-D14p	16 ½	pond			
Seismic Cone Penetration Test ²	C-B01	102	Planned building area			
Cone Penetration Test	C-B02	102 ½	Parking/driveway area /future expansion			

1. Feet below existing ground surface.

2. Shear wave velocity testing was performed during cone advancement.

Exploration Layout and Elevations: Unless otherwise noted, Terracon personnel provided the exploration layout. Coordination were obtained a handheld GPS unit (estimated horizontal accuracy of about ± 2 feet) and approximate elevations were obtained by interpolation from the topographic site plan obtained from the City of Marysville GIS database (5-foot contours). If elevations and a more precise exploration layout are desired, we recommend explorations be surveyed.

Borehole Procedure: We advanced the borings with a truck-mounted drill rig using continuous flight hollow stem augers. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter.

In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. We observed and recorded groundwater levels and sampling. For safety purposes, borings B-B01 and B-B03 were backfilled with bentonite chips after their completion. Groundwater monitoring wells were installed in boring B-P08p, B-D13p and B-D14p.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Test Pit Procedures: Test pits were advanced via an excavator outfitted with a toothed bucket. The test pit sidewalls and excavated soil were observed by a Terracon field engineer and characterized accordingly in the test pit logs. Groundwater seepage depths as well as fill, debris, and other deleterious materials observed are described in the logs as well.

Excavated soils were stockpiled in the vicinity of the pit for further observation and for convenient backfilling. The density/consistency of the soil was inferred through frequent probing of the base of the excavations for the upper 4 feet. Thereafter, soil density presented on the logs are inferred from probing observations and excavator level of effort during test pit advancement.

Test pits were typically terminated upon contacting groundwater. Bulk samples were collected for CBR testing and to evaluate potential reuse of onsite soils. Our exploration team prepared draft test pit logs in the field (i.e. field logs) as part of standard operations. Field logs included visual classifications of soils encountered during exploration, and our interpretation of subsurface conditions between samples. Final test pit logs, prepared from field logs, represent the geotechnical engineer's interpretation, and include modifications based on observations and laboratory testing results.

Cone Penetration Testing (CPT) Procedures: Advancement of the cone instrument was performed through a porthole in the approximate center of a truck rig. The truck is outfitted with a hydraulic press that continuously advances a standardized and calibrated cone at a constant rate. During advancement, a near-continuous profile of data was collected for cone tip and side friction resistance exerted on the cone by the soils as well as the in-situ pore water pressure generated during cone advancement.

The tip, side friction, and pore water data are interpreted using empirical correlations to derive soil engineering properties for the full length of cone advancement. Additionally, estimates of groundwater level were made through measuring the dissipation of excess pore water pressure that is generated during cone advancement. The data collected was used to estimate a soil behavior type which is used to infer the classification of the soils encountered (i.e. sand, silt, clay, etc.) and to estimate geotechnical engineering parameters as well as to performed liquefaction analysis.

A data report of the CPT results was provided to Terracon by the CPT subcontractor and are included herein. Soil samples were not obtained during performance of CPTs. See **Supplemental Information** for the ConeTec report. CPT-B01 is a seismic cone penetration test (sCPT) in which shear wave velocity testing was performed during cone advancement.

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests to understand the engineering properties of the various soil strata, as necessary, for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils (Hydrometer)
- ASTM D1883 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (part of CBR test)

The laboratory testing program often included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.

SITE LOCATION AND EXPLORATION PLANS

Contents:

Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION

SAIA LTL Freight Terminal Marysville, Washington December 27, 2021 Terracon Project No. 81215171

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

MAP PROVIDED BY MICROSOFT BING MAPS

EXPLORATION RESULTS

Contents:

Boring Logs (B-B01, B-B03, BP08p, B-D13p, B-D14p) Test Pit Logs (TP-01 through TP-08) CPT Logs (CPT-B01 and CPT-B02) Grain Size Distribution California Bearing Ratio Corrosivity

		BORI	NG LOO	g no.	B-B	30 [,]	1				Pad	ge 1 of	2		
Р	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT:	SAIA Johr	LT ALT	TL F	reig	iht ≩∆						
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA			UUIII			, 、							
YER	90	LOCATION See Exploration Plan			-	(;)	/EL ONS	ſΡΕ	(In.)	t, c	ö	(%)	NES		
MODEL LAYER	GRAPHIC LOG	Latitude: 48.1120° Longitude: -122.1788°			-/+ DEDTH (Et)	ц ц	ER LEV RVATIO	LET	VERY	FIELD TEST RESULTS	Sample No.	ATER IENT (ENT FI		
MOD	GRA		roximate Surface E				WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIEL	Sam	WATER CONTENT (%)	PERCENT FINES		
1		DEPTH 0.2. ∖TOPSOIL, dark brown, moist, loose to medium o		ILEVATION (F	it.) 5+/~		0								
2		⟨(SM), with roots and rootlets <u>SILTY SAND (SM)</u> , with organics, fine grained, c loose to medium dense	dark brown, mo			_									
		^{2.8} trace organics, medium dense			2+/-	_		\bigvee	16	3-6-5	S-1	25.6			
		POORLY GRADED SAND WITH SILT (SP-SM), 1 grained, brown, moist, medium dense	trace gravel, fir	ne		_		Д	10	N=11		20.0			
		fine to coarse grained, brownish gray to gray fine to coarse grained sand, fine to coarse grain	ed gravel		5	5 —									
		inte to coarse grained sand, inte to coarse grain	ieu gravei			_	\bigtriangledown	Х	16	3-5-9 N=14	S-2				
						_		/ ```							
		wet, dense				_		\bigvee	15	6-13-19) S-3				
						_		Д	10	N=32		_			
		10.0 POORLY GRADED SAND (SP), trace gravel, fin	e to medium	75	<u>5+/-</u> 1	0-									
		grained, brownish gray to gray, wet, medium de	nse			_		Х	13	3-6-6 N=12	S-4	18.5	4		
						_									
						_									
3						_									
					1	5-				4 40 40	<u></u>				
		fine grained at 15-1/2 ft				_		Х	16	4-12-19 N=31	S-5				
						_									
		easy drilling				_									
						_									
		20.0 <u>SILTY SAND (SM)</u> , trace gravel, fine to medium	grained dark	65	<u>5+/-</u> 2	20-					_				
		gray, wet, dense, sand interbedded with silt laye	ers			_		Х	12	5-15-27 N=42	S-6	16.1	21		
						_									
						_									
						_									
		25.0		60)+/- 2	25-									
	St	atification lines are approximate. In-situ, the transition may be gra	idual.									•			
		ent Method: See Ex	ploration and Test	ing Procedure	s for a	1	Notes:								
Hollow Stem Auger description of field and laboratory p used and additional data (If any).															
			pporting Informations and abbreviation		tion of										
	anng p	Elevation Site play	ons were interpola n	ted from a top	ographic	c									
\Box	W	WATER LEVEL OBSERVATIONS hile drilling	lor:			\vdash			d: 10-	14-2021	Boring Complet	ed: 10-14-	2021		
		•	21905 64th Ave				rill Rig		46		Driller: EDI Env	ironmenta	I		
	Mountlake Terrace, WA					Pr	oject l	No.: 8	12151	1/1					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21

		BORI	NG LO	g no.	B-B	01					Page	2 of 2	2
Р	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT:	SAIA Johns		rei	ght			0		
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA			Johns		-R, 1	54					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1120° Longitude: -122.1788°	roximate Surface	Elev : 85 (Ft) -	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		Sample No.	WATER CONTENT (%)	PERCENT FINES
Σ	0	DEPTH POORLY GRADED SAND WITH SILT (SP-SM),		ELEVATION (F		≥®	s S	R				U U	ΒE
		to medium grained, dark gray, wet, medium der	race gravel, i ise	Ine		-	X	11	9-9-11 N=20		S-7		
					30	-	X	9	11-12-1 N=29	7	S-8		
3		dense		35	-		10	6-16-16 N=32	6	S-9			
					40	_							
		41.5		43.5		_	\mathbb{X}	10	16-16-2 N=43	7 s	S-10		
		Boring Terminated at 41.5 Feet											
	St	atification lines are approximate. In-situ, the transition may be gra	idual.						1				
		ent Method: See Ex Stem Auger descrip used ar	ploration and Tes tion of field and la nd additional data	sting Procedure aboratory proce a (If any).	s for a dures	Notes	:						
		ent Method: symbol: ackfilled with bentonite grout upon completion Elevation	pporting Informat s and abbreviations were interpol	ons.									
Ę	,	WATER LEVEL OBSERVATIONS				Boring	Starte	d: 10-	14-2021	Boring Cor	mpleted	10-14-2	2021
\rightarrow	_ W	hile drilling	ierr	DCO		Drill Rig	g:			Driller: ED	I Enviro	nmental	
				ve W, Ste 100 Ferrace WA		Project	No · s	31215	171				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21

		BO	RING LO	G NO. E	3-B()3				Pa	ge 1 of	3
Р	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT: S	SAIA I Johns		rei	ght			0	
S	ITE:	Smokey Point Blvd and 128th St Marysville, WA	NE		Johns		, ,	57				
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1120° Longitude: -122.1776°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	Sample No.	WATER CONTENT (%)	PERCENT FINES
	GR	DEPTH	Approximate Surface	ELEVATION (Ft.)		WA ⁻ OBSI	SAN	REC	풀쮼	Š	00	PER(
1 2		0.2_/ <u>TOPSOIL</u> , dark brown, moist, loose to medi (SM), with roots and rootlets	um dense, Silty Sa	/								
	••••••••••••••••••••••••••••••••••••••	1.5 SILTY SAND (SM), with organics, dark brow medium dense		83.5+	·/-							
		WELL GRADED SAND WITH SILT (SW-SM) brown, moist, medium dense	l, fine grained, ligh	it		_	\square	11	4-5-6 N=11	S-1		
		fine to medium grained, wet			5 -		\bigtriangledown	9	3-5-6 N=11	S-2	22.3	11
		gray					\square		IN-11			
		7.5 POORLY GRADED SAND WITH SILT (SP-S	M), trace gravel, fi	77.5+ ine	·/-				556			
		to medium grained, gray, wet medium dense				_	Å	9	5-5-6 N=11	S-3	22.7	10
		medium to coarse grained			10-		X	10	5-9-7 N=16	S-4		
3												
		coarse grained, dense			15-		X	5	5-9-24 N=33	S-5	19.1	6
						_						
		medium dense medium to coarse grained at 20-1/2 ft			20-	-	\square	17	5-8-13 N=21	S-6		
						_						
					25	_						
	St	atification lines are approximate. In-situ, the transition may b	e gradual.									•
		de de	ee Exploration and Tes scription of field and la ed and additional data	aboratory proced	for a ures	Notes:	:					
		ent Method: sy ackfilled with bentonite grout upon completion	ee Supporting Informat mbols and abbreviatio evations were interpola	ins.								
		WATER LEVEL OBSERVATIONS	e plan.			Boring S	Starte	d: 10-	15-2021	Boring Comple	ted: 10-15	-2021
	. In	erred from change in sample moisture	lierra	DCO		Drill Rig				Driller: EDI En		
			21905 64th Av Mountlake T			Project		31215 [.]	171			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21

Ρ	ROJ	ECT: SAIA Motor Freight Terminal	ORING LO	CLIENT: S		TL F	reig	ght GA			Page	2 of 3	5
S	ITE:	Smokey Point Blvd and 128th Marysville, WA	St NE				,						
ΈR	LOG	LOCATION See Exploration Plan				NS NS	ЪЕ	(In.)	F			(%	S HZ
MODEL LAYER	GRAPHIC L	Latitude: 48.1120° Longitude: -122.1776°	Approximate Surface	e Elev.: 85 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		Sample No.	WATER CONTENT (%)	DERCENT FINES
2				ELEVATION (Ft.)		≤¤	ŝ	R				0	
		POORLY GRADED SAND WITH SILT (SI to medium grained, gray, wet <i>(continued)</i> fine to medium grained, gray, dense		line	-	-	Д	17	5-10-2 N=33		S-7	24.7	6
					-								
		trace gravel, medium dense			30-				2-4-16	3		_	
					-	-	Å	17	N=20		S-8		
					-	-							
					35-	-	X	17	5-6-9 N=15		S-9	_	
3					-	-						-	
		medium to coarse grained, dense			- 40-	-		10	10-11-2	23	6.40	-	
					-	-	\square	16	N=34		S-10	_	
					-	-							
		fine grained, very dense			45-	-	X	16	26-37-4 N=79		S-11	-	
					-	-							
					50-	-							
	St	ratification lines are approximate. In-situ, the transition ma	ay be gradual.										
		ent Method: Stem Auger	See Exploration and Te description of field and used and additional dat	laboratory procedur	<i>.</i>	Notes:							
		ent Method: ackfilled with bentonite grout upon completion	See Supporting Informa symbols and abbreviati Elevations were interpo- site plan.	ons.									
		WATER LEVEL OBSERVATIONS			E	Boring S	Starte	d: 10-1	5-2021	Boring	Completed	: 10-15-	2021
	_ Ini	ferred from change in sample moisture	21905 64th A	acor ve W, Ste 100		Drill Rig		464-5	74	Driller:	EDI Enviro	nmenta	
				Terrace, WA	F	Project	No.: 8	812151	71	1			

	BORING LOG NO. B-B03 Page 3 of 3												
Р	ROJ	ECT: SAIA Motor Freight Terminal	CLIENT:	SAI Joh	A L ⁻	TL Fr Creel	reig k. C	ht A			0		
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA											
ĨR	OG	LOCATION See Exploration Plan			(EL NS	РЕ	ln.)	ь			%)	LES
MODEL LAYER	GRAPHIC LOG	Latitude: 48.1120° Longitude: -122.1776°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		Sample No.	WATER CONTENT (%)	PERCENT FINES
ODEL	RAPH	Anarovimato Surf	ace Elev.: 85 (Ft.)	±/	ЕРТ	ATER SERV	MPL	COVE	IELD		Samp	WA'	SCEN
ž	Ū	DEPTH	ELEVATION (F			В В К	SA	RE	Ľ		0,	ö	PEF
		POORLY GRADED SAND WITH SILT (SP-SM) , trace grave to medium grained, gray, wet <i>(continued)</i> medium to coarse grained, gray, dense	el, fine		_		X	15	16-27-17 N=44	7 5	S-12		
					_								
					_								
		55.0 SILTY SAND (SM), fine grained, gray, wet, dense	3	<u>)+/-</u> {	55—					_			
3		<u></u>			_		X	17	18-20-23 N=43	3	S-13		
					_								
					_								
					_								
		60.5 <u>POORLY GRADED SAND (SP)</u> , medium grained, gray, web	24.	<u>5+/-</u> (60-		\bigvee	16	11-11-29 N=40	9	S-14		
		61.5 dense Boring Terminated at 61.5 Feet	23.	5+/-					11-40				
		Boring Terminated at 61.5 Feel											
	Str	atification lines are approximate. In-situ, the transition may be gradual.											ı
	01												
		ent Method: See Exploration and description of field au used and additional	Testing Procedure nd laboratory proce data (If anv).	s for a dures	 	Notes:							
		See Supporting Infor ant Method: symbols and abbrevi	mation for explana	tion of									
В		ackfilled with bentonite grout upon completion Elevations were inter-	rpolated from a top	ograph	nic								
	WATER LEVEL OBSERVATIONS				В	oring St	tartec	l: 10-′	15-2021	Boring Co	mpleted:	10-15-2	2021
					D	rill Rig:				Driller: ED	DI Enviro	nmental	
			h Ave W, Ste 100 ke Terrace, WA		P	roject N	lo.: 8	12151	171				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21

	BORING LOG NO. B-P08p Page 1 of 1													
Р	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT:	SAIA Johr		- Fre	igh	t					
S	ITE:	Smokey Point Blvd and 128th St N Marysville, WA	E	_	JOIII	15 01	een,	Gr						
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1125° Longitude: -122.1777° Approximate Surface Ele DEPTH EL	ev.: 85 (Ft.) +/- EVATION (Ft.)	INSTALLATIO DETAILS	ИС	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		Sample No.	WATER CONTENT (%)	PERCENT FINES
-1		0.2 <u>TOPSOIL</u> , dark brown, moist, loose to medium dense, Silty Sand (SM), with roots and rootlets <u>SILTY SAND (SM)</u> , with organics, fine to medium grained, dark brown, moist, loose to medium dense	1 <u>85+/</u>	Bentonite ► Chips			-							
2		light brown, moist, loose				_		X	10	4-4-4 N=8		S-1	20.9	21
		5.0 POORLY GRADED SAND (SP), light brown, wet, medium dense medium to coarse grained, gray	80+/-			5— 		X	16	5-6-8 N=14		S-2		
		trace gravel, coarse grained	-:	Sand Filter		_	-	X	17	2-10-1 N=25		S-3		
3		dense	-:	Screen		1 0-	-	X	18	11-20-2 N=45		S-4		
						_	-							
		16.5	68.5+/-			1 5 -	-	X	4	13-26-2 N=49		S-5		
H Aba	Boring Terminated at 16.5 Feet Image: Constraint of the set of t								ft					
		vater monitoring well installed	tions were interpo		ographic	-	ng Sta-	tod: 1	0-15-201	21	loring Co-	nnloto-	10 15 1	2021
			llerr	Boring Started: 10-15-2021 Boring Completed: 10 Drill Rig: Driller: EDI Environm										
$\underline{\vee}$	2190			th Ave W, Ste 100 ake Terrace, WA Project No.: 81215171										

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE.GDT 12/2/21

			B	ORING LOO	G NO. B-D13	вр		Page 1 of	f 1			
	Ρ	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT: SAIA L	TL Freight Creek, GA		0				
	S	ITE:	Smokey Point Blvd and 128th Marysville, WA	St NE		Sieek, GA						
	MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1112° Longitude: -122.1781° DEPTH	Approxi	mate Surface Elev.: 84 (Ft.) ELEVATION (f		DEPTH (Ft.) WATER LEVEL OBSERVATIONS	SAMPLE TYPE Sample No.	WATER CONTENT (%)			
Ē	1 2		0.2_/ <u>TOPSOIL</u> , dark brown, moist, loose, Silty rootlets		ots and	_Bentonite		anz	12.1			
			<u>SILTY SAND (SM)</u> , with organics, dark b POORLY GRADED SAND WITH SILT (S		loose	5+/- Chips						
12/2/21							 5	S-1	13.0			
ATEMPLATE.GDT			wet medium dense			-Sand Filter		S-2	-			
CON_DAT	3							S-3	-			
PJ TERRA						-Screen	10-	S-4	-			
81215171 SAIA MOTOR FREIGH.GPJ TERRACON_DATATEMPLATE.GDT 12/2/21									-			
1215171 SA			very dense		67.5		1 5	S-5	-			
			Boring Terminated at 16.5 Feet									
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL												
ED FROM ORIGINAL R												
PARATE		St	atification lines are approximate. In-situ, the transition m	ay be gradual.								
- VALID IF SE			ent Method: tem Auger	See Exploration and Te description of field and used and additional dat See Supporting Informa	laboratory procedures a (If any).	Notes: Groundwater monitoring well m above the groundsurface	onument is a	pproximately	3ft			
DG IS NOT		iroundv	ent Method: ater monitoring well installed	symbols and abbreviation								
ING LC	\bigtriangledown	,	WATER LEVEL OBSERVATIONS hile drilling		B	oring Started: 10-14-2021	Started: 10-14-2021 Boring Completed: 10-14-2021					
BOR	V	7	ter 24 hours			rill Rig:	Driller: EDI	Environment	tal			
Ĩ					ve W, Ste 100 Terrace, WA Pr	oject No.: 81215171						

	BORING LOG NO. B-D14p Page 1 of 1									
Ρ	RO	JECT: SAIA Motor Freight Terminal		CLIENT: SAIA LTL Johns Cr	. Freight eek. GA					
S	ITE	Smokey Point Blvd and 128th St NE Marysville, WA			,					
MODEL LAYER	GRAPHIC LOG		Approxi	mate Surface Elev.: 85 (Ft.) +/-		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS SAMPLE TYPE	Sample No.	WATER CONTENT (%)	
1		DEPTH 10.2.√ TOPSOIL , dark brown, moist, loose to medium dens	se, Silty S	ELEVATION (Ft.)						
3		with roots and rootlets 1.5 SILTY SAND (SM), with organics, dark brown, moist dense POORLY GRADED SAND WITH SILT (SP-SM), brow medium dense wet dense 18.5 Boring Terminated at 16.5 Feet		/	-Sand Filter			S-1 S-2 S-3 S-4 S-5		
		Stratification lines are approximate. In-situ, the transition may be gradual.								
		ment Maked								
H Aba	ollow	/ Stem Auger description o used and ad 	of field and l ditional data ing Informa abbreviatio	tion for explanation of	tes: bundwater monitoring well m bve the groundsurface	onumen	it is appro	ximately	3ft	
\bigtriangledown		WATER LEVEL OBSERVATIONS		Borir	Boring Started: 10-14-2021 Boring Completed: 1				1-2021	
$\overline{\nabla}$		While drilling After installation of well			Rig:	Driller	r: EDI Env	vironment	al	
	_ /	21		ve W, Ste 100 Ferrace, WA Proje	ect No.: 81215171					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE.GDT 12/2/21

		IE	SI PII LO	DG NO. TP	-01			Pa	age 1 of	1	
Ρ	ROJI	ECT: SAIA Motor Freight Terminal		CLIENT: SAIA Johns	LTL Freight s Creek, GA						
S	ITE:	Smokey Point Blvd and 128th S Marysville, WA	t NE								
ER	DG	LOCATION See Exploration Plan				(EL NS	ΡE		(%	
MODEL LAYER	GRAPHIC LOG	Latitude: 48.1125° Longitude: -122.1790°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)	
DEL	АРН	-				EPT-	TER ERV	1PLE	ample	WAT	
MO	GR			Approximat	te Surface Elev.: 85 (Ft.) +/-	ä	WA:	SAN	ů	00	
1	. <u>74 1</u> 8. 7 <u>7</u>	DEPTH TOPSOIL, with organics, brown, moist, Silt	ty Sand (SM), with	roots	ELEVATION (Ft.)						
•	17 . 1. 1.	1.0 POORLY GRADED SAND (SP), light brown	to gray transition	s to gray with increas	84+/-	-					
			r to gray, transition	s to gray with morea		_					
		gray									
•						-					
3		trace gravel, medium to coarse grained, lig	ht gray, loose			-		5mg	S-1		
						5 –					
						_					
		6.5 Test Pit Terminated at 6.5 Feet			78.5+/-		\bigtriangledown				
	Str	atification lines are approximate. In-situ, the transition may	bo gradual								
	30		be gradual.								
		nt Method:	See Exploration and Te	sting Procedures for a	Notes:						
E	xcavatio	on c	See Exploration and Test lescription of field and I used and additional data	aboratory procedures							
			See Supporting Informa	tion for explanation of							
Abandonment Method: symbols and abbreviations.											
	Elevations were interpolated from a topographic site plan.										
\bigtriangledown	WATER LEVEL OBSERVATIONS Test Pit Started: 10-14-2021					Те	Test Pit Completed: 10-14-2021				
	While excavating						Operator: Green Earthworks				
			21905 64th A Mountlake T		Project No.: 81215171						
_	_										

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH GPU TERRACON_DATATEMPLATE. GDT 12/2/21

	TEST PIT LOG NO. TP-02 Page 1 of 1									
Р	ROJ	ECT: SAIA Motor Freight Terminal		CLIENT: SAIA Johns	LTL Freight s Creek, GA					
S	ITE:	Smokey Point Blvd and 128th Marysville, WA	St NE							
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1123° Longitude: -122.1773°		Approximat	te Surface Elev.: 84 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)
1	. <u>717</u> . 7	DEPTH TOPSOIL, with organics, brown, moist,	Silty Sand (SM), with	roots	ELEVATION (Ft.)		-0	0)		
•	<u>17</u> . <u>x 17</u>	1.5 POORLY GRADED SAND (SP), medium	n grained, brownish g	ray, moist	82.5+/-	_	-			
3		trace gravel, loose				- 5 -	-	The second	S-1	-
		6.0 gray Test Pit Terminated at 6 Feet					\bigtriangledown			
	Str	l atification lines are approximate. In-situ, the transition r	nay be gradual.			<u> </u>	I	I I		1
	anceme xcavati	ent Method: on	See Exploration and Te description of field and used and additional dat See Supporting Informa	a (If any).	Notes:					
		ent Method: ackfilled with excavated soil	symbols and abbreviation							
		WATER LEVEL OBSERVATIONS	site plan.		Test Pit Started: 10-14-2021	Те	est Pit	Comp	leted: 10-14	4-2021
\square	_ W	hile excavating		acon	Excavator:			-	en Earthwo	
				ve W, Ste 100 Terrace, WA	Project No.: 81215171					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21

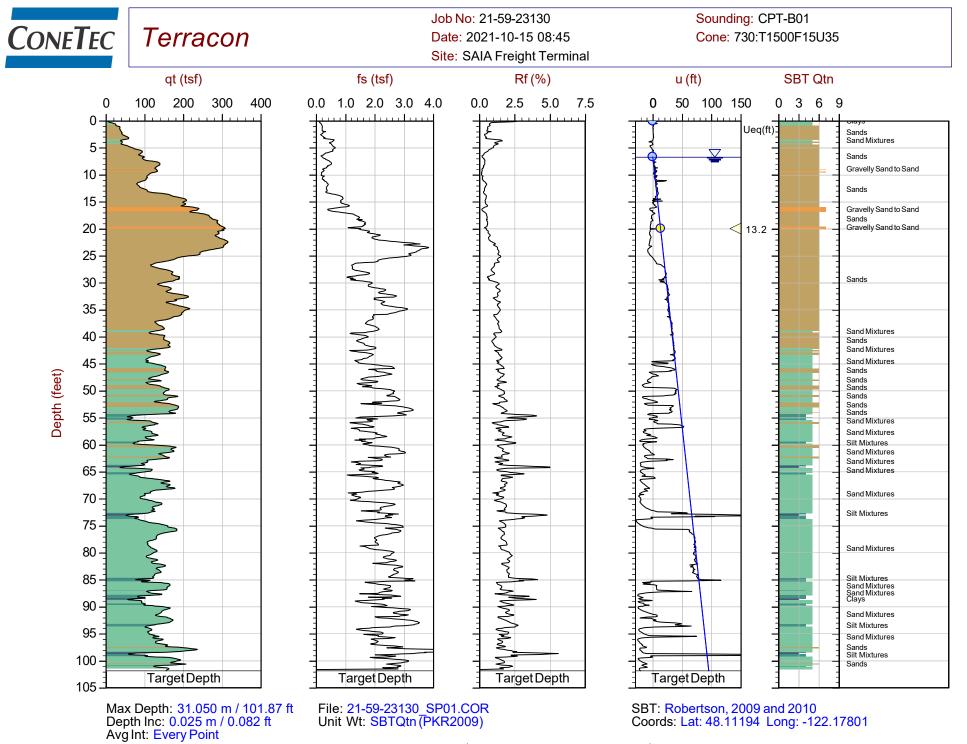
TEST	PIT	LOG	NO.	TP-0)3
------	-----	-----	-----	------	----

IEST PITLOG NO. TP-03								age 1 of	1
Ρ	ROJI	ECT: SAIA Motor Freight Terminal	CLIENT: SAIA Johns	LTL Freight s Creek, GA					
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA							
Æ	g	LOCATION See Exploration Plan			<u>.</u>	ONS NS	ЪЕ	Ġ	(%
MODEL LAYER	GRAPHIC LOG	Latitude: 48.1125° Longitude: -122.1762°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)
ODE	RAPI		Annrovimate	Surface Elev.: 85.5 (Ft.) +/-	DEPT	ATEF SER	MPL	Samp	WA
Ź		DEPTH		ELEVATION (Ft.)		ŠВ	SA		ŏ
1	<u>, 17</u> . <u>(1</u> 17 . (17	TOPSOIL , with organics, dark brown, moist, Silty Sand	d (SM), with roots	84.5+/-					
	17	POORLY GRADED SAND (SP), dark brown, moist		0.0.1/-	_				
					_	-			
		trace gravel, fine to medium grained, light brown and li	ight grov, loogo to modium.	danaa	_		The second	S-1	-
3		trace gravel, line to medium grained, light brown and li	ight gray, loose to medium		_				1
					-				
		trace gravel, coarse grained, brownish gray, loose to n	nedium dense		5 –		19	S-2	
		6.5		79+/-	-	\bigtriangledown			
		Test Pit Terminated at 6.5 Feet							
	Str	atification lines are approximate. In-situ, the transition may be gradual.		I					
	anceme xcavatio	on description of fi	and Testing Procedures for a eld and laboratory procedures onal data (If any).	Notes:					
Aba	ndonme	See Supporting symbols and ab	Information for explanation of obreviations.						
		ackfilled with excavated soil	e interpolated from a topographic						
	,	WATER LEVEL OBSERVATIONS			-	of Dit	Carri	alatari da di	1 2004
\bigtriangledown			rracon	Test Pit Started: 10-14-2021				oleted: 10-14	
			5 64th Ave W, Ste 100	Excavator:	0	perato	r: Gre	een Earthwo	rks
			untlake Terrace, WA	Project No.: 81215171					

Ρ	ROJI	ECT: SAIA Motor Freight Termina	I	CLIENT: SAIA	LTL Freight				age 1 of	
S	ITE:	Smokey Point Blvd and 128t Marysville, WA	h St NE	John	s Creek, ĞA					
Я К	LOG	LOCATION See Exploration Plan				<u>(</u> ;	NS NS	PE SNS	ċ	
MODEL LAYER	GRAPHIC L	Latitude: 48.1123° Longitude: -122.1783°		Approxima	te Surface Elev.: 85 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER
2	<u> </u>	DEPTH TOPSOIL, with organics, brown, moist	Cilty Cond (CM) with		ELEVATION (Ft.)		≥₿	s/		
	 /\/_/	1.0		10015	84+/-	-	-			
		POORLY GRADED SAND (SP), light g	ray, moist			-	-			
3		fine to medium grained, brown, loose	to medium dense			-	-	1	S-1	_
		trace gravel, gray 6.0			79+/-	5 -				
		Test Pit Terminated at 6 Feet				_				
	Str	atification lines are approximate. In-situ, the transitior	n may be gradual.							
		······································								
	anceme xcavatio	nt Method: on	See Exploration and Te description of field and used and additional dat	laboratory procedures	Notes:					
٩ba	Indonme	ent Method:	See Supporting Information Symbols and abbreviation							
		ackfilled with excavated soil	Elevations were interpo	lated from a topographic						
		WATER LEVEL OBSERVATIONS	site plan.		Test Pit Started: 10-14-2021	Т	est Pit	Com	pleted: 10-1	4-202
\checkmark	_ W	hile excavating	- lierr	acon	Excavator:				en Earthwo	
			21905 64th A	ve W, Ste 100 Terrace, WA	Project No.: 81215171					
			woundke							

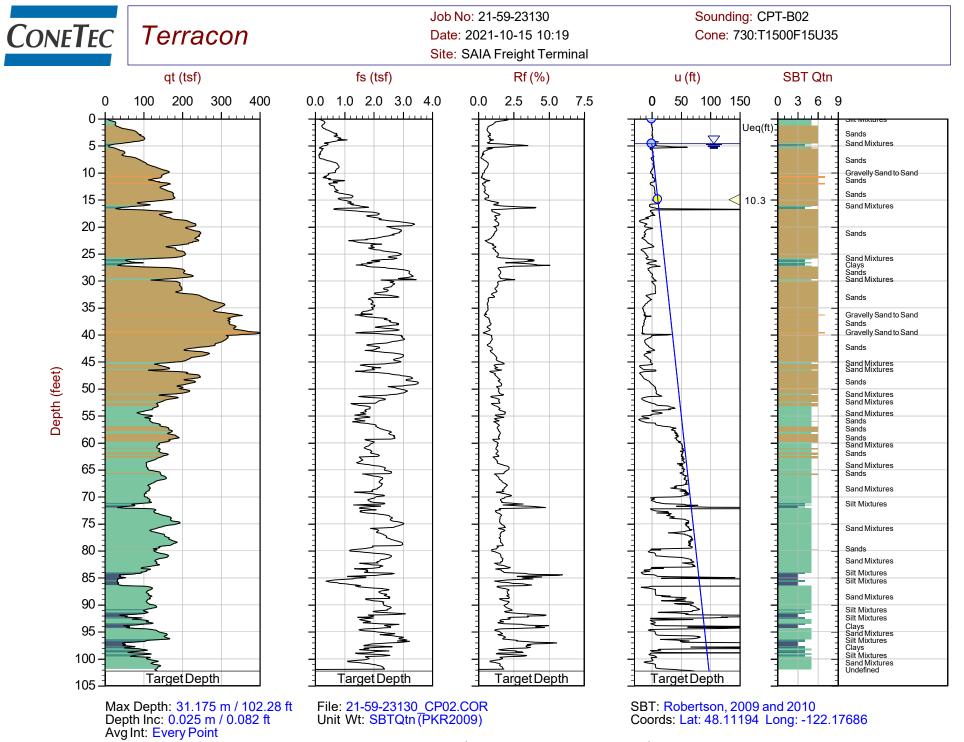
TEST PIT	LOG N	O. TP-05
-----------------	-------	----------

		IESI PII	LOG NO. TP	-05			Pa	age 1 of	1
Ρ	ROJ	ECT: SAIA Motor Freight Terminal	CLIENT: SAIA Johns	LTL Freight s Creek, GA					
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA							1
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1122° Longitude: -122.1792° DEPTH	Approximat	te Surface Elev.: 85 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)
1	<u></u>	TOPSOIL, with organics, dark brown, moist, Silty Sand (S	SM), with roots						
2		1.0 <u>SILTY SAND (SM)</u> , brown, moist, increasing coarse mate	rial with depth	84+/-	-		.000		
		2.0 <u>POORLY GRADED SAND (SP)</u> , trace gravel, medium to c	coarse grained, light brov		-		E.	S-1	19.0
3		moist			- - 5 -		E.S.	S-2	-
		6.5_coarse grained, gray		78.5+/-	-		ems.	S-3	
	Str	Test Pit Terminated at 6.5 Feet							
Adv			d Testing Presedures for a	Notes:					
E	ndonme	on description of field used and additional used and additional set of field used and additional set of the se	ormation for explanation of						
∇	,	WATER LEVEL OBSERVATIONS		Test Pit Started: 10-14-2021	Tes	st Pit C	Comp	leted: 10-14	1-2021
			TOCON Ith Ave W, Ste 100	Excavator:	Op	erator	: Gre	en Earthwo	rks
		Mountla	ake Terrace, WA	Project No.: 81215171					


THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH.GPJ TERRACON_DATATEMPLATE.GDT 12/2/21

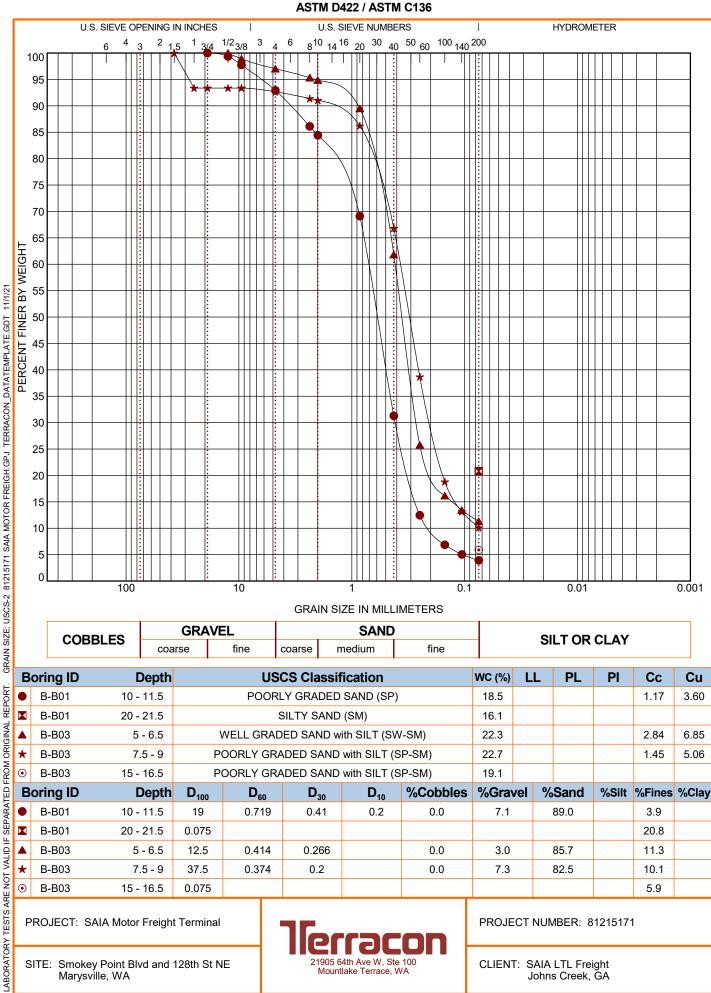
			TEST PIT LO	DG NO. TP-	-06			Pa	age 1 of	1
Р	ROJI	ECT: SAIA Motor Freight Termir	nal	CLIENT: SAIA	LTL Freight Creek, GA				-	
S	ITE:	Smokey Point Blvd and 12 Marysville, WA	8th St NE							
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1116° Longitude: -122.1782°		Approximat	e Surface Elev.: 85 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)
1 2 3		DEPTH TOPSOIL, with organics, dark brown 10 SILTY SAND (SM), trace gravel, ligh 2.0 POORLY GRADED SAND (SP), trac 6.5 coarse grained, gray, wet Test Pit Terminated at 6.5 Feet	nt brown, moist					1997 - 19	S-1 S-2	
	Str	atification lines are approximate. In-situ, the transit	ion may be gradual.							
E Aba	ndonme	ent Method: on ent Method: vackfilled with excavated soil	See Exploration and Te description of field and I used and additional data See Supporting Informa symbols and abbreviation Elevations were interpol site plan.	aboratory procedures a (If any). tion for explanation of	Notes:					
		WATER LEVEL OBSERVATIONS			Test Pit Started: 10-14-2021	Τe	est Pit	Comp	leted: 10-1-	4-2021
\square	W	hile excavating	- lierr	acon	Excavator:	0	perato	r: Gre	en Earthwo	rks
				ve W, Ste 100 Ferrace, WA	Project No.: 81215171					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81215171 SAIA MOTOR FREIGH. GPJ TERRACON_DATATEMPLATE. GDT 12/2/21


		IESII	PIT LOG NO. IF	-07			Pa	age 1 of	1
Ρ	ROJI	ECT: SAIA Motor Freight Terminal	CLIENT: SAIA John	A LTL Freight ns Creek, GA					
S	ITE:	Smokey Point Blvd and 128th St NE Marysville, WA							
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 48.1116° Longitude: -122.1771°	Approxin	nate Surface Elev.: 84 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	Sample No.	WATER CONTENT (%)
2	<u></u>	DEPTH TOPSOIL, with organics, dark brown, moist, Silty S		ELEVATION (Ft.)		≤¤	Ś		0
	Str	POORLY GRADED SAND (SP), brownish gray, mo with Silty Sand lenses increased coarse grained material with depth brown to gray 7.0 Test Pit Terminated at 7 Feet atification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attification lines are approximate. In-situ, the transition may be gradue attific	al.		5-			<u>S-1</u>	
		ent Method: backfilled with excavated soil Elevations	additional data (If any). orting Information for explanation of nd abbreviations. were interpolated from a topographi	c					
		WATER LEVEL OBSERVATIONS		Test Pit Started: 10-14-2021	Tes	st Pit (Comr	leted: 10-14	-2021
\square	W	hile excavating	erracon	Excavator:				en Earthwor	
			21905 64th Ave W, Ste 100 Mountlake Terrace, WA	Project No.: 81215171					

F	PROJ	ECT: SAIA Motor Freight Termin	al	CLIENT: SAIA	LTL Freight				age 1 of	
5	SITE:	Smokey Point Blvd and 128 Marysville, WA	Bth St NE	John	s Creek, ĜA					
R	g	LOCATION See Exploration Plan					NS	Ш		3
MODEL LAYER	RAPHIC LOG	Latitude: 48.1117° Longitude: -122.1760°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	E TYPE	Sample No.	WATER CONTENT (%)
MODE	GRAP			Approxima	te Surface Elev.: 85 (Ft.) +/-	DEP1	VATE	SAMPLE	Sam	AW TNOC
_	<u>x1 / </u>	DEPTH TOPSOIL , with organics, dark brown	, moist, Silty Sand (SM)	with roots	ELEVATION (Ft.)		>0	S		
1	1, 1,	1.0 SILTY SAND (SM), light brown, mois		,	84+/-	-	-			
2		2.5	-		82.5+/-	_	_			
5		POORLY GRADED SAND (SP), fine t	to medium grained, light	t brown to gray, mois		_		renz.	S-1	
						_	_			
		5.0 Test Pit Terminated at 5 Feet			80+/-	5-	\bigtriangledown			
<u>S</u>										
5										
2										
2										
4										
L L										
2										
ō D										
5										
5										
ופוע										
	St	ratification lines are approximate. In-situ, the transition	on may be gradual.							
Adv		ent Method:	See Exploration and Te	esting Procedures for a	Notes:					
	Excavati	ion	description of field and used and additional da	laboratory procedures						
	andonm	ent Method:	See Supporting Information Symbols and abbreviation							
2 70		backfilled with excavated soil	Elevations were interpo	blated from a topographic						
		WATER LEVEL OBSERVATIONS	site plan.		Test Pit Started: 10-14-2021		est Dit	Com	oleted: 10-1	14_2024
	-	hile excavating	_ llerr	acon	Excavator:				en Earthw	
			21905 64th A	Ave W, Ste 100			/perat0	. GIE		0110
=1			Mountlake	Terrace, WA	Project No.: 81215171					

Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.


Hydrostatic Line

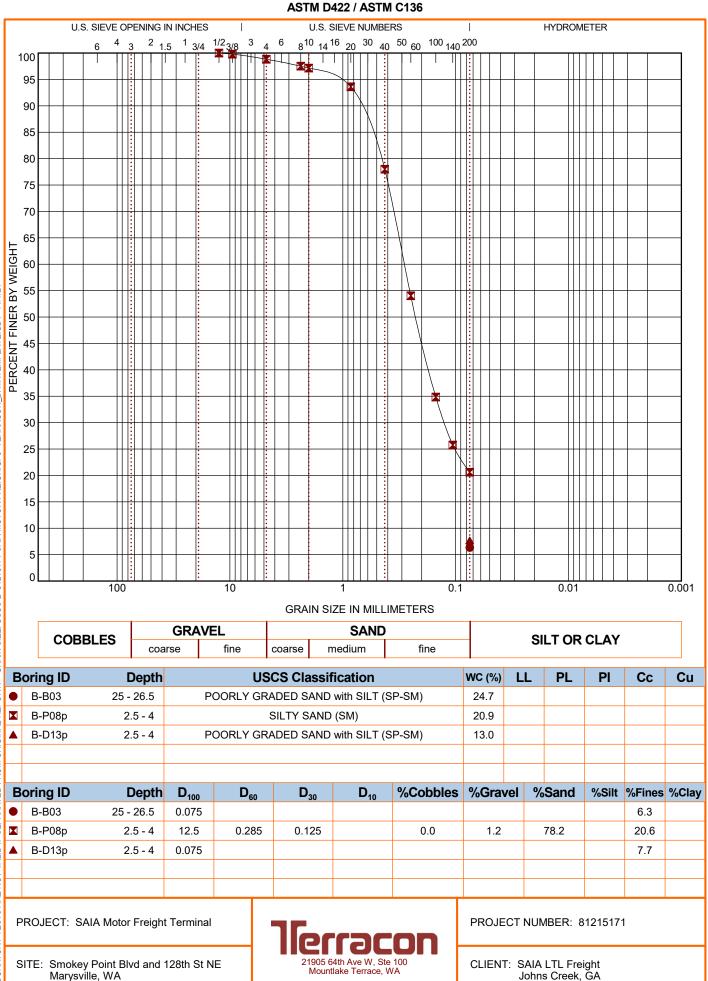
Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Hydrostatic Line

GRAIN SIZE DISTRIBUTION

	-	8 801	10 11.0										0.00
		B-B01	20 - 21.5		SILTY SAND (SM)								
		B-B03	5 - 6.5	١	WELL GRADED SAND with SILT (SW-SM)							2.84	6.85
	*	B-B03	7.5 - 9	P	POORLY GRADED SAND with SILT (SP-SM)							1.45	5.06
	\odot	B-B03	15 - 16.5	P	POORLY GRADED SAND with SILT (SP-SM)				19.1				
	В	oring ID	Depth	D ₁₀₀	D ₆₀	D ₃₀	D ₁₀	%Cobbles	%Gravel	%Sand	%Silt	%Fines	%Clay
		B-B01	10 - 11.5	19	0.719	0.41	0.2	0.0	7.1	89.0		3.9	
ļ		B-B01	20 - 21.5	0.075								20.8	
		B-B03	5 - 6.5	12.5	0.414	0.266		0.0	3.0	85.7		11.3	
	*	B-B03	7.5 - 9	37.5	0.374	0.2		0.0	7.3	82.5		10.1	
	\odot	B-B03	15 - 16.5	0.075								5.9	

PROJECT: SAIA Motor Freight Terminal


SITE: Smokey Point Blvd and 128th St NE Marysville, WA

PROJECT NUMBER: 81215171

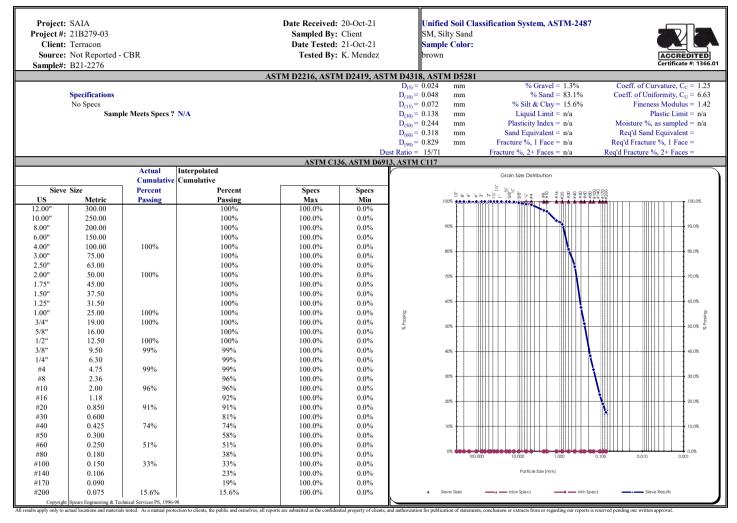
CLIENT: SAIA LTL Freight Johns Creek, GA

GRAIN SIZE DISTRIBUTION

Client:	Terracon	Date:	November 1, 2021
Address:	21905 64th Ave W, Suite 100	Project:	SAIA
	Mountlake Terrace, WA 98043	Project #:	21B279-03
Attn:	Nithybhan Chandaresan	Sample #:	B21-2276
Revised on:		Date sampled:	October 20, 2021

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
X	Sieve Analysis	Please See Attached Report		Sulfate Soundness	
Χ	Proctor	116.1 pcf at 11.3%		Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count			LA Abrasion	
	Moisture Content		Х	CBR	Please See Attached Report
	Specific Gravity, Coarse				
	Specific Gravity, Fine				
	Hydrometer Analysis				
	Atterberg Limits				


If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

h Bladget and Non

Respectfully Submitted, Meghan Blodgett-Carrillo WABO Supervising Laboratory Technician

Sieve Report

Comments:

Nayh Badget Grillo

Reviewed by: Meghan Blodgett-Carrillo

Proctor Report

Proj	ect: SAIA		Date Received:	20-Oct-21	Unified Soils Cl	assification System	n, ASTM D-2487		A	ASTM C13	36	
	et #: 21B279-03		Sampled By:		SM, Silty Sand	•		Sieve	Size	Percent		
	Client: Terracon Date Tested: 21-Oct-21 Sample Color Source: Not Reported - CBR Tested By: K. Mendez brown					US	<u>mm</u>	Passing	Max	Min		
	le#: B21-2276		Tested By:	K. Mendez	brown			12.00" 10.00"	300.00 250.00		100 % 100 %	0% 0%
Samp	R <i>i</i> , D 21 2270	Sample Prepared:	Moist:	Х	М	anual:		8.00"	200.00		100 %	0%
		Sumple Prepareur	Dry:			anical: X		6.00"	150.00		100 %	0 %
		Test Standard:	ASTM D698:		AASHTC	Т 99:	Method	4.00"	100.00	100 %	100 %	0 %
			ASTM D 1557:	Х	AASHTO 2	Г 180:	А	3.00"	75.00		100 %	0 %
Ass	sumed Sp. Gr.	Point	Percent	Dry		Uncorrected Proc		2.50"	63.00		100 %	0 %
	2.50	Number	Moisture	Density		ax. Dry Density	Optimum Moist	2.00"	50.00	100 %	100 %	0 %
	_	1	8.3 %	111.4	116.	1 lbs/ft ³	11.3 %	1.75"	45.00		100 %	0%
		2	10.4 %	115.5	X7 1			1.50"	37.50		100 %	0%
		3	12.4 % 14.2 %	115.8		ie w/ Oversize Cor		1.25"	31.50	100.07	100 %	0 % 0 %
ACCRE		4	14.2 %	111.8		ax. Dry Density lbs/ft	Optimum Moist	1.00" 3/4"	25.00 19.00	100 %	100 % 100 %	
	#: 1366.01				N/A	IDS/IU	N/A	5/8"	19.00	100 %	100 %	0 % 0 %
								1/2"	12.50	100 %	100 %	0%
(Ν	Aoisture Density	Relationshin)			3/8"	9.50	99 %	100 %	0%
132.	2.0 T			·	-			1/4"	6.30	<i>))</i> /0	100 %	0%
130.								#4	4.75	99 %	100 %	0%
128.								#8	2.36	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100 %	0%
126. 124								#10	2.00	96 %	100 %	0 %
								#16	1.18		100 %	0%
A: 122. USU 120. Q 118.	0.0		Żero Air Voi	ds				#20	0.850	91 %	100 %	0 %
Q 118.								#30	0.600		100 %	0 %
Č 116. Q 114				<u> </u>				#40	0.425	74 %	100 %	0 %
114.				<u> </u>				#50	0.300		100 %	0 %
110.								#60	0.250	51 %	100 %	0 %
108.	3.0			<u> </u>	<u>```</u>			#80	0.180		100 %	0 %
106.	5.0 Free 1	10% 11% 12%	13% 14%		16% 17%	18% 19% 2	0% 21% 22%	#100	0.150	33 %	100 %	0 %
	770 070 970	10/0 11/0 12/0	Percent M		10/0 17/0	10/0 15/0 2	0/0 21/0 22/0	#140	0.106		100 %	0 %
				 Data 	Points	Zero Air Voids Curve	Curve Fit	#170 #200	0.090 0.075	15.6 %	100 % 100.0 %	0 % 0.0 %
	ASTM D471	8, Misc. Oversize Cor	rection Values			Specs: No Specs				Meet	s Specs?	N/A
		%	Oversize Mat'l:	1%		% Gra	wel: 1.3%	C _C :	1.25		D ₍₁₀₎ :	
% Overs	ize Corrected	Optimum				% S	and: 83.1%	C _U :	6.63		D ₍₃₀₎ :	
Retaine	ed Density	Moisture				% Silt&C	Clay: 15.6%	FM:	1.42		D ₍₆₀₎ :	0.318
5%	117.6	10.8%										
10%		10.3%					LL: n/a	PL:	n/a		PI:	n/a
15%		9.7%										
20%		9.2%				Sand Equiva	lent: n/a	Req'	d Sand E	quivalent:		
25%		8.6%										
30%		8.1%				Fracture %, 1 F				6, 1 Face:		
	pyright Spears Engineering & Technical Ser- only to actual locations and materials tested.					Fracture %, 2+ Fa		Req'd Fra				

Comments:

h Bladget and lo

Reviewed by: Meghan Blodgett-Carrillo

CBR Report

Client: Source:	SAIA 21B279-03 Terracon Not Reporte B21-2276	ed - CBR]	Date Received: 2 Sampled By: 0 Date Tested: 2 Tested By: 1	Client 21-Oct-21		Unified So SM, Silty S Sample Co brown	Sand	ication System	, ASTM D-24	487	ACCRE	
				Califo	rnia Bearing Ra	tio, ASTN	1 1883	·				C	BR Load Ri	ng
						Blows/Lift	Blows/Lift	Blows/Lift				Cal	ibrated 3/2/2	021
	Test Stands	ard				10	25	56					y=mx+b	
A	ASHTO T 99:			Weigh	t of Mold + Soils:	27.3	25.9	25.8	lbs			m	b	
1	ASTM D 698:				Weight of Mold:	17.8	16.2	16.0	lbs			9.465011	9.224079	
AA	SHTO T 180:			We	t Weight of Soils:	9.5	9.7	9.8	lbs					
А	STM D 1557:	Х			Wet Density:	126.6	130.0	131.5	lbs/ft ³					
	Method:	Α			% Moisture:	13.2%	14.0%	13.8%						
					Dry Density:	111.8	114.0	115.5	lbs/ft ³	Max. Dry	y Density	Optimu	m Moist.	
	Sample Pro	epared			% Compaction:	96.2%	98.2%	99.5%		116.1	lbs/ft ³	11.	.3%	
	Moist:	Х		Initi	al Swell Reading:	0.37	0.6	0.45						
	Dry:			Fin	al Swell Reading:	0.384	0.611	0.454						
	Manual:				% Swell:	0.31%	0.24%	0.09%						
	Mechanical:	Х			CBR Value:	12.9	20.3	22.6						
				9	sted CBR Value:									
Dial	#1	Depth	#1	CBR	Dial	#2	Depth	#2	CBR	Dial	#3	Depth	#3	CBR
Reading 0	Load 0	Inches 0.000	psi 0	Value	Reading 0	Load 0	Inches 0.000	psi 0	Value	Reading 0	Load 0	Inches 0.000	psi 0	Value
4	47	0.000	16		5	57	0.000	19		13	132	0.000	44	
10	104	0.050	35		13	132	0.050	44		26	255	0.025	86	
16	161	0.075	55		25	246	0.075	82		40	388	0.075	130	
23	227	0.100	76	8	42	407	0.100	136	14	57	549	0.100	184	18
32	312	0.125	105		57	549	0.125	184		68	653	0.125	219	
40	388	0.150	130		71	681	0.150	228		88	842	0.150	282	
50	482	0.175	162		85	814	0.175	273		96	918	0.175	308	
60	577	0.200	193	13	95	908	0.200	304	20	106	1,013	0.200	339	23
102	975	0.300	327	17	150	1,429	0.300	479	25	161	1,533	0.300	514	27
127	1,211	0.400	406	18	168	1,599	0.400	536	23	178	1,694	0.400	568	25
138	1,315	0.500	441	17	176	1,675	0.500	561	22	182	1,732	0.500	580	22
500	С	BR Pen	etratio	n Curv	'e				CE	BR Comp	action C	urve		
⁷⁰⁰ E								24.0						
600 -								22.0						
500							l e	20.0						
							CBR Value	18.0		_				
isd 400 300								16.0						
b 300 f									/	1				
i i i i i i i i i i i i i i i i i i i							1 5	14.0						
- 200								12.0						
100 -	100							10.0				· · · · ·		
								96.0%		97.0%	98.0%	99.0	170	100.0%
	0.000 0.100 0.200 0.300 0.400 0.500 0.600													
0.00	0.10					0.000								
		ren	etration	(inches))					%	Compact	ion		
		 #	#1 — • — #2	<u> </u>							R Compaction Cur	ve		

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

Nigh Elsiget and lo

Reviewed by:

Client

SAIA LTL Freight

Project

SAIA Motor Freight Terminal

Sample Submitted By: Terracon (81)

Date Received: 11/19/2021

Lab No.: 21-0887

Result	s of Corrosic	on Analysis	
Sample Number	S-1	S-2	S-1
Sample Location	B-B03	TP-5	TP-8
Sample Depth (ft.)	2.5-6.0	2.5-3.0	2.5-3.0
pH Analysis, ASTM G 51	7.10	6.60	6.48
Water Soluble Sulfate (SO4), ASTM C 1580 (mg/kg)	77	56	28
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	45	28	25
Red-Ox, ASTM G 200, (mV)	+718	+717	+725
– Total Salts, AWWA 2520 B, (mg/kg)	83	84	52
Saturated Minimum Resistivity, ASTM G 57, (ohm-cm)	18430	27160	51410

N. Carp

Analyzed By:

Nathan Campo Engineering Technician II

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

SUPPORTING INFORMATION

Contents:

General Notes Unified Soil Classification System Cone Penetration Testing Data Report (ConeTec)

GENERAL NOTES DESCRIPTION OF SYMBOLS AND ABBREVIATIONS SAIA Motor Freight Terminal Marysville, WA Terracon Project No. 81215171

SAMPLING	WATER LEVEL		FIELD TESTS
	Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Grab Sample Standard Test	_────────────────────────────────────	(HP)	Hand Penetrometer
	Water Level After a Specified Period of Time	(T)	Torvane
	Cave In Encountered	(DCP)	Dynamic Cone Penetrometer
	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur	UC	Unconfined Compressive Strength
	determination of groundwater levels is not possible with short term water level	(PID)	Photo-Ionization Detector
	observations.	(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	S	TRENGTH TE	RMS					
RELATIVE DENSITY	OF COARSE-GRAINED SOILS	CONSISTENCY OF FINE-GRAINED SOILS						
	retained on No. 200 sieve.) / Standard Penetration Resistance	(50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manua procedures or standard penetration resistance						
Descriptive Term (Density)			Unconfined Compressive Strength Qu, (tsf)	Standard Penetration or N-Value Blows/Ft.				
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1				
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4				
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8				
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15				
Very Dense	Very Dense > 50		2.00 to 4.00	15 - 30				
			> 4.00	> 30				

RELEVANCE OF SOIL BORING LOG

The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

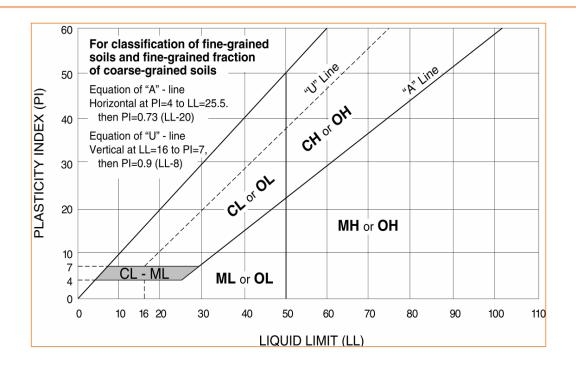
UNIFIED SOIL CLASSIFICATION SYSTEM

					Soil Classification	
Criteria for Assign	ing Group Symbols	and Group Names	Using Laboratory	Tests A	Group Symbol	Group Name ^B
		Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F
Coarse-Grained Soils: More than 50% retained on No. 200 sieve	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or Cc>3.0] ^E		GP	Poorly graded gravel
		Gravels with Fines:	Fines classify as ML or MH		GM	Silty gravel ^{F, G, H}
		More than 12% fines ^c	Fines classify as CL or CH		GC	Clayey gravel ^{F, G, H}
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand
		Less than 5% fines ^D	Cu < 6 and/or [Cc<1 or Cc>3.0] E		SP	Poorly graded sand I
		Sands with Fines:	Fines classify as ML or MH		SM	Silty sand ^{G, H, I}
		More than 12% fines ^D	Fines classify as CL or CH		SC	Clayey sand ^{G, H, I}
		Inorgania	PI > 7 and plots on or above "A"		CL	Lean clay ^{K, L, M}
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line J		ML	Silt K, L, M
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Liquid limit less than 50	Organic:	Liquid limit - oven dried	- < 0.75 OL -	Organic clay K, L, M, N	
			Liquid limit - not dried		<u> </u>	Organic silt ^{K, L, M, O}
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		СН	Fat clay <mark>K, L, M</mark>
			PI plots below "A" line	ots below "A" line		Elastic Silt ^{K, L, M}
		Organic:	Liquid limit - oven dried	< 0.75	он	Organic clay K, L, M, P
		Organic.	Liquid limit - not dried			Organic silt K, L, M, Q
Highly organic soils:	Primarily organic matter, dark in color, and organic odor				PT	Peat

ABased on the material passing the 3-inch (75-mm) sieve.

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

$$\mathbf{E} \operatorname{Cu} = \operatorname{D}_{60}/\operatorname{D}_{10} \operatorname{Cc} = \frac{\left(\operatorname{D}_{30}\right)^2}{\operatorname{D}_{10} \operatorname{x} \operatorname{D}_{60}}$$


F If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^HIf fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N PI \geq 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^QPI plots below "A" line.

UNIFIED SOIL CLASSIFICATION SYSTEM

PRESENTATION OF SITE INVESTIGATION RESULTS

SAIA Freight Terminal

Prepared for:

Terracon Consultants, Inc.

ConeTec Job No: 21-59-23130

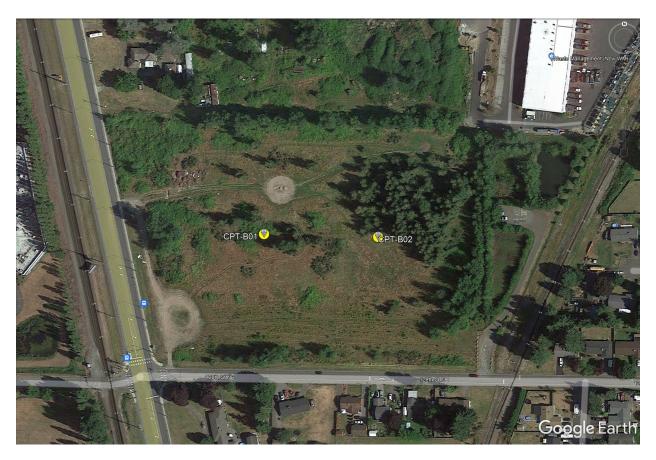
Project Start Date: 15-OCT-2021 Project End Date: 15-OCT-2021 Report Date: 21-OCT-2021

Prepared by:

ConeTec Inc. 1508 O Street SW, Unit 103-104 Auburn, WA 98001

Tel: (253) 397-4861

ConeTecWA@conetec.com www.conetec.com www.conetecdataservices.com


Introduction

The enclosed report presents the results of the site investigation program conducted by ConeTec Inc. for Terracon Consultants, Inc. at 4127 128th St NE, Marysville, WA 98271. The program consisted of cone penetration tests and seismic cone penetration tests.

Project Information

Project	
Client	Terracon Consultants, Inc.
Project	SAIA Freight Terminal
ConeTec project number	21-59-23130

An aerial overview from Google Earth including the CPTu test locations is presented below.

Rig Description	Deployment System	Test Type	
C20-30Ton Truck Rig	Integrated Push Cylinders	СРТи	

Coordinates		
Test Type	Collection Method	EPSG Number
СРТи	Consumer grade GPS	4326

Cone Penetrometers Used for this Project						
Cone Description	Cone Number	Cross	Sleeve	Tip	Sleeve	Pore Pressure
		Sectional	Area	Capacity	Capacity	Capacity
		Area (cm²)	(cm²)	(bar)	(bar)	(bar)
730: T1500F15U35	730	15.0	225	1500	15	35
Cone 730 was used for all CPTu soundings						

Cone Penetration Test (CPTu)					
Depth reference	Depths are referenced to the existing ground surface at the time of each				
Deptimerence	test.				
Tip and sleeve data offset	0.1 meter				
The and sleeve data offset	This has been accounted for in the CPT data files.				
	 Normalized plots with Qtn and Norm: Fr(%) 				
	 Advanced plots with Ic, Su, phi and N(60)/N1(60) 				
Additional plots	Soil Behaviour Type (SBT) scatter plots				
	Seismic shear wave (Vs) plots				
	Seismic shear wave (Vs) Wave Trace plots				

Calculated Geotechnical Parameter Tables			
Additional information	The Normalized Soil Behaviour Type Chart based on Q_{tn} (SBT Q_{tn}) (Robertson, 2009) was used to classify the soil for this project. A detailed set of calculated CPTu parameters have been generated and are provided in Excel format files in the release folder. The CPTu parameter calculations are based on values of corrected tip resistance (q_t) sleeve friction (f_s) and pore pressure (u_2). Effective stresses are calculated based on unit weights that have been assigned to the individual soil behaviour type zones and the assumed equilibrium pore pressure profile.		

Limitations

This report has been prepared for the exclusive use of Terracon Consultants, Inc. (Client) for the project titled "SAIA Freight Terminal". The report's contents may not be relied upon by any other party without the express written permission of ConeTec Inc. (ConeTec). ConeTec has provided site investigation services, prepared the factual data reporting and provided geotechnical parameter calculations consistent with current best practices. No other warranty, expressed or implied, is made.

The information presented in the report document and the accompanying data set pertain to the specific project, site conditions and objectives described to ConeTec by the Client. In order to properly understand the factual data, assumptions and calculations, reference must be made to the documents provided and their accompanying data sets, in their entirety.

Cone penetration tests (CPTu) are conducted using an integrated electronic piezocone penetrometer and data acquisition system manufactured by Adara Systems Ltd., a subsidiary of ConeTec.

ConeTec's piezocone penetrometers are compression type designs in which the tip and friction sleeve load cells are independent and have separate load capacities. The piezocones use strain gauged load cells for tip and sleeve friction and a strain gauged diaphragm type transducer for recording pore pressure. The piezocones also have a platinum resistive temperature device (RTD) for monitoring the temperature of the sensors, an accelerometer type dual axis inclinometer and two geophone sensors for recording seismic signals. All signals are amplified and measured with minimum sixteen-bit resolution down hole within the cone body, and the signals are sent to the surface using a high bandwidth, error corrected digital interface through a shielded cable.

ConeTec penetrometers are manufactured with various tip, friction and pore pressure capacities in both 10 cm² and 15 cm² tip base area configurations in order to maximize signal resolution for various soil conditions. The specific piezocone used for each test is described in the CPT summary table presented in the first appendix. The 15 cm² penetrometers do not require friction reducers as they have a diameter larger than the deployment rods. The 10 cm² piezocones use a friction reducer consisting of a rod adapter extension behind the main cone body with an enlarged cross sectional area (typically 44 millimeters diameter over a length of 32 millimeters with tapered leading and trailing edges) located at a distance of 585 millimeters above the cone tip.

The penetrometers are designed with equal end area friction sleeves, a net end area ratio of 0.8 and cone tips with a 60 degree apex angle.

All ConeTec piezocones can record pore pressure at various locations. Unless otherwise noted, the pore pressure filter is located directly behind the cone tip in the " u_2 " position (ASTM Type 2). The filter is six millimeters thick, made of porous plastic (polyethylene) having an average pore size of 125 microns (90-160 microns). The function of the filter is to allow rapid movements of extremely small volumes of water needed to activate the pressure transducer while preventing soil ingress or blockage.

The piezocone penetrometers are manufactured with dimensions, tolerances and sensor characteristics that are in general accordance with the current ASTM D5778 standard. ConeTec's calibration criteria also meets or exceeds those of the current ASTM D5778 standard. An illustration of the piezocone penetrometer is presented in Figure CPTu.

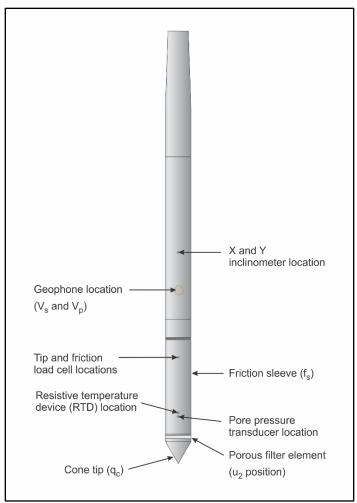


Figure CPTu. Piezocone Penetrometer (15 cm²)

The ConeTec data acquisition systems consist of a Windows based computer and a signal interface box and power supply. The signal interface combines depth increment signals, seismic trigger signals and the downhole digital data. This combined data is then sent to the Windows based computer for collection and presentation. The data is recorded at fixed depth increments using a depth wheel attached to the push cylinders or by using a spring loaded rubber depth wheel that is held against the cone rods. The typical recording interval is 2.5 centimeters; custom recording intervals are possible.

The system displays the CPTu data in real time and records the following parameters to a storage media during penetration:

- Depth
- Uncorrected tip resistance (q_c)
- Sleeve friction (f_s)
- Dynamic pore pressure (u)
- Additional sensors such as resistivity, passive gamma, ultra violet induced fluorescence, if applicable

All testing is performed in accordance to ConeTec's CPTu operating procedures which are in general accordance with the current ASTM D5778 standard.

Prior to the start of a CPTu sounding a suitable cone is selected, the cone and data acquisition system are powered on, the pore pressure system is saturated with silicone oil and the baseline readings are recorded with the cone hanging freely in a vertical position.

The CPTu is conducted at a steady rate of two centimeters per second, within acceptable tolerances. Typically one meter length rods with an outer diameter of 1.5 inches (38.1 millimeters) are added to advance the cone to the sounding termination depth. After cone retraction final baselines are recorded.

Additional information pertaining to ConeTec's cone penetration testing procedures:

- Each filter is saturated in silicone oil under vacuum pressure prior to use
- Baseline readings are compared to previous readings
- Soundings are terminated at the client's target depth or at a depth where an obstruction is encountered, excessive rod flex occurs, excessive inclination occurs, equipment damage is likely to take place, or a dangerous working environment arises
- Differences between initial and final baselines are calculated to ensure zero load offsets have not occurred and to ensure compliance with ASTM standards

The interpretation of piezocone data for this report is based on the corrected tip resistance (q_t) , sleeve friction (f_s) and pore water pressure (u). The interpretation of soil type is based on the correlations developed by Robertson et al. (1986) and Robertson (1990, 2009). It should be noted that it is not always possible to accurately identify a soil behavior type based on these parameters. In these situations, experience, judgment and an assessment of other parameters may be used to infer soil behavior type.

The recorded tip resistance (q_c) is the total force acting on the piezocone tip divided by its base area. The tip resistance is corrected for pore pressure effects and termed corrected tip resistance (q_t) according to the following expression presented in Robertson et al. (1986):

$$q_t = q_c + (1-a) \bullet u_2$$

where: qt is the corrected tip resistance

- q_c is the recorded tip resistance
- u₂ is the recorded dynamic pore pressure behind the tip (u₂ position)
- a is the Net Area Ratio for the piezocone (0.8 for ConeTec probes)

The sleeve friction (f_s) is the frictional force on the sleeve divided by its surface area. As all ConeTec piezocones have equal end area friction sleeves, pore pressure corrections to the sleeve data are not required.

The dynamic pore pressure (u) is a measure of the pore pressures generated during cone penetration. To record equilibrium pore pressure, the penetration must be stopped to allow the dynamic pore pressures to stabilize. The rate at which this occurs is predominantly a function of the permeability of the soil and the diameter of the cone.

The friction ratio (R_f) is a calculated parameter. It is defined as the ratio of sleeve friction to the tip resistance expressed as a percentage. Generally, saturated cohesive soils have low tip resistance, high friction ratios and generate large excess pore water pressures. Cohesionless soils have higher tip resistances, lower friction ratios and do not generate significant excess pore water pressure.

A summary of the CPTu soundings along with test details and individual plots are provided in the appendices. A set of files with calculated geotechnical parameters were generated for each sounding based on published correlations and are provided in Excel format in the data release folder. Information regarding the methods used is also included in the data release folder.

For additional information on CPTu interpretations and calculated geotechnical parameters, refer to Robertson et al. (1986), Lunne et al. (1997), Robertson (2009), Mayne (2013, 2014) and Mayne and Peuchen (2012).

Shear wave velocity (Vs) testing is performed in conjunction with the piezocone penetration test (SCPTu) in order to collect interval velocities. For some projects seismic compression wave velocity (Vp) testing is also performed.

ConeTec's piezocone penetrometers are manufactured with one horizontally active geophone (28 hertz) and one vertically active geophone (28 hertz). Both geophones are rigidly mounted in the body of the cone penetrometer, 0.2 meters behind the cone tip. The vertically mounted geophone is more sensitive to compression waves.

Shear waves are typically generated by using an impact hammer horizontally striking a beam that is held in place by a normal load. In some instances, an auger source or an imbedded impulsive source may be used for both shear waves and compression waves. The hammer and beam act as a contact trigger that initiates the recording of the seismic wave traces. For impulsive devices an accelerometer trigger may be used. The traces are recorded in the memory of the cone using a fast analog to digital converter. The seismic trace is then transmitted digitally uphole to a Windows based computer through a signal interface box for recording and analysis. An illustration of the shear wave testing configuration is presented in Figure SCPTu-1.

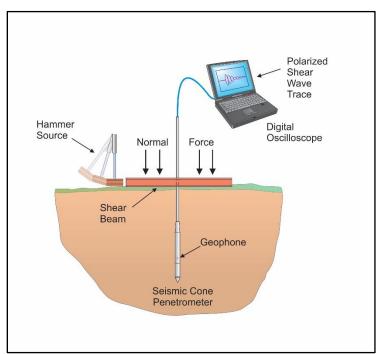
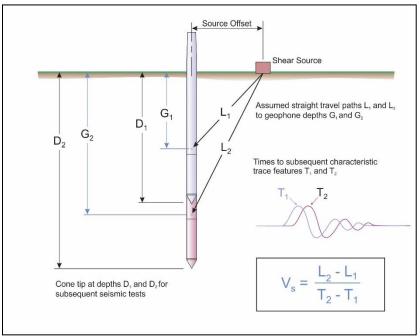


Figure SCPTu-1. Illustration of the SCPTu system


All testing is performed in accordance to ConeTec's SCPTu operating procedures which are in general accordance with the current ASTM D5778 and ASTM D7400 standards.

Prior to the start of a SCPTu sounding, the procedures described in the Cone Penetration Test section are followed. In addition, the active axis of the geophone is aligned parallel to the beam (or source) and the horizontal offset between the cone and the source is measured and recorded.

Prior to recording seismic waves at each test depth, cone penetration is stopped and the rods are decoupled from the rig to avoid transmission of rig energy down the rods. Typically, five wave traces for

each orientation are recorded for quality control and uncertainty analysis purposes. After reviewing wave traces for consistency the cone is pushed to the next test depth (typically one meter intervals or as requested by the client). Figure SCPTu-2 presents an illustration of a SCPTu test.

For additional information on seismic cone penetration testing refer to Robertson et al. (1986).

Figure SCPTu-2. Illustration of a seismic cone penetration test

Calculation of the interval velocities are performed by visually picking a common feature (e.g. the first characteristic peak, trough, or crossover) on all of the recorded wave sets and taking the difference in ray path divided by the time difference between subsequent features. Ray path is defined as the straight line distance from the seismic source to the geophone, accounting for beam offset, source depth and geophone offset from the cone tip.

For all SCPTu soundings that have achieved a depth of at least 100 feet (30 meters), the average shear wave velocity to a depth of 100 feet (\bar{v}_s) has been calculated and provided for all applicable soundings using the following equation presented in ASCE (2010).

$$\overline{v}_{s} = \frac{\sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n} \frac{d_{i}}{v_{si}}}$$

where:

- \overline{v}_s = average shear wave velocity ft/s (m/s) d_i = the thickness of any layer between 0 and 100 ft (30 m)
- v_{si} = the shear wave velocity in ft/s (m/s)
- $\sum_{i=1}^{n} d_i$ = the total thickness of all layers between 0 and 100 ft (30 m)

Average shear wave velocity, \overline{v}_s is also referenced to V_{s100} or V_{s30} .

The layer travel times refers to the travel times propagating in the vertical direction, not the measured travel times from an offset source.

Tabular results and SCPTu plots are presented in the relevant appendix.

The cone penetration test is halted at specific depths to carry out pore pressure dissipation (PPD) tests, shown in Figure PPD-1. For each dissipation test the cone and rods are decoupled from the rig and the data acquisition system measures and records the variation of the pore pressure (u) with time (t).

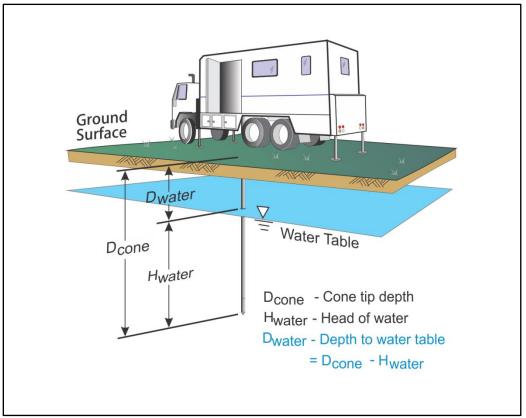


Figure PPD-1. Pore pressure dissipation test setup

Pore pressure dissipation data can be interpreted to provide estimates of ground water conditions, permeability, consolidation characteristics and soil behavior.

The typical shapes of dissipation curves shown in Figure PPD-2 are very useful in assessing soil type, drainage, in situ pore pressure and soil properties. A flat curve that stabilizes quickly is typical of a freely draining sand. Undrained soils such as clays will typically show positive excess pore pressure and have long dissipation times. Dilative soils will often exhibit dynamic pore pressures below equilibrium that then rise over time. Overconsolidated fine-grained soils will often exhibit an initial dilatory response where there is an initial rise in pore pressure before reaching a peak and dissipating.

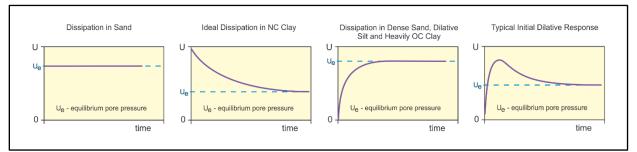


Figure PPD-2. Pore pressure dissipation curve examples

In order to interpret the equilibrium pore pressure (u_{eq}) and the apparent phreatic surface, the pore pressure should be monitored until such time as there is no variation in pore pressure with time as shown for each curve in Figure PPD-2.

In fine grained deposits the point at which 100% of the excess pore pressure has dissipated is known as t_{100} . In some cases this can take an excessive amount of time and it may be impractical to take the dissipation to t_{100} . A theoretical analysis of pore pressure dissipations by Teh and Houlsby (1991) showed that a single curve relating degree of dissipation versus theoretical time factor (T*) may be used to calculate the coefficient of consolidation (c_h) at various degrees of dissipation resulting in the expression for c_h shown below.

$$c_{h} = \frac{T^{*} \cdot a^{2} \cdot \sqrt{I_{r}}}{t}$$

Where:

- T* is the dimensionless time factor (Table Time Factor)
- a is the radius of the cone
- Ir is the rigidity index
- t is the time at the degree of consolidation

Table Time Factor	. T* versus degree of d	lissipation (Teh	and Houlsby (1991))
-------------------	-------------------------	------------------	---------------------

Degree of Dissipation (%)	20	30	40	50	60	70	80
T* (u ₂)	0.038	0.078	0.142	0.245	0.439	0.804	1.60

The coefficient of consolidation is typically analyzed using the time (t_{50}) corresponding to a degree of dissipation of 50% (u_{50}) . In order to determine t_{50} , dissipation tests must be taken to a pressure less than u_{50} . The u_{50} value is half way between the initial maximum pore pressure and the equilibrium pore pressure value, known as u_{100} . To estimate u_{50} , both the initial maximum pore pressure and u_{100} must be known or estimated. Other degrees of dissipations may be considered, particularly for extremely long dissipations.

At any specific degree of dissipation the equilibrium pore pressure (u at t_{100}) must be estimated at the depth of interest. The equilibrium value may be determined from one or more sources such as measuring the value directly (u_{100}), estimating it from other dissipations in the same profile, estimating the phreatic surface and assuming hydrostatic conditions, from nearby soundings, from client provided information, from site observations and/or past experience, or from other site instrumentation.

For calculations of c_h (Teh and Houlsby (1991)), t_{50} values are estimated from the corresponding pore pressure dissipation curve and a rigidity index (I_r) is assumed. For curves having an initial dilatory response in which an initial rise in pore pressure occurs before reaching a peak, the relative time from the peak value is used in determining t_{50} . In cases where the time to peak is excessive, t_{50} values are not calculated.

Due to possible inherent uncertainties in estimating I_r , the equilibrium pore pressure and the effect of an initial dilatory response on calculating t_{50} , other methods should be applied to confirm the results for c_h .

Additional published methods for estimating the coefficient of consolidation from a piezocone test are described in Burns and Mayne (1998, 2002), Jones and Van Zyl (1981), Robertson et al. (1992) and Sully et al. (1999).

A summary of the pore pressure dissipation tests and dissipation plots are presented in the relevant appendix.

American Society of Civil Engineers (ASCE), 2010, "Minimum Design Loads for Buildings and Other Structures", Standard ASCE/SEI 7-10, American Society of Civil Engineers, ISBN 978-0-7844-1085-1, Reston, Virginia. DOI: 10.1061/9780784412916.

ASTM D5778-12, 2012, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM International, West Conshohocken, PA. DOI: 10.1520/D5778-12.

ASTM D7400/D7400M-19, 2019, "Standard Test Methods for Downhole Seismic Testing", ASTM International, West Conshohocken, PA. DOI: 10.1520/D7400_D7400M-19.

Burns, S.E. and Mayne, P.W., 1998, "Monotonic and dilatory pore pressure decay during piezocone tests", Canadian Geotechnical Journal 26 (4): 1063-1073. DOI: 1063-1073/T98-062.

Burns, S.E. and Mayne, P.W., 2002, "Analytical cavity expansion-critical state model cone dissipation in fine-grained soils", Soils & Foundations, Vol. 42(2): 131-137.

Jones, G.A. and Van Zyl, D.J.A., 1981, "The piezometer probe: a useful investigation tool", Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. 3, Stockholm: 489-495.

Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

Mayne, P.W., 2013, "Evaluating yield stress of soils from laboratory consolidation and in-situ cone penetration tests", Sound Geotechnical Research to Practice (Holtz Volume) GSP 230, ASCE, Reston/VA: 406-420. DOI: 10.1061/9780784412770.027.

Mayne, P.W. and Peuchen, J., 2012, "Unit weight trends with cone resistance in soft to firm clays", Geotechnical and Geophysical Site Characterization *4*, Vol. 1 (Proc. ISC-4, Pernambuco), CRC Press, London: 903-910.

Mayne, P.W., 2014, "Interpretation of geotechnical parameters from seismic piezocone tests", CPT'14 Keynote Address, Las Vegas, NV, May 2014.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.

Robertson, P.K., Campanella, R.G., Gillespie D and Rice, A., 1986, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8: 791-803. DOI: 10.1061/(ASCE)0733-9410(1986)112:8(791).

Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27: 151-158. DOI: 10.1139/T90-014.

Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G., 1992, "Estimating coefficient of consolidation from piezocone tests", Canadian Geotechnical Journal, 29(4): 539-550. DOI: 10.1139/T92-061.

Robertson, P.K., 2009, "Interpretation of cone penetration tests – a unified approach", Canadian Geotechnical Journal, Volume 46: 1337-1355. DOI: 10.1139/T09-065.

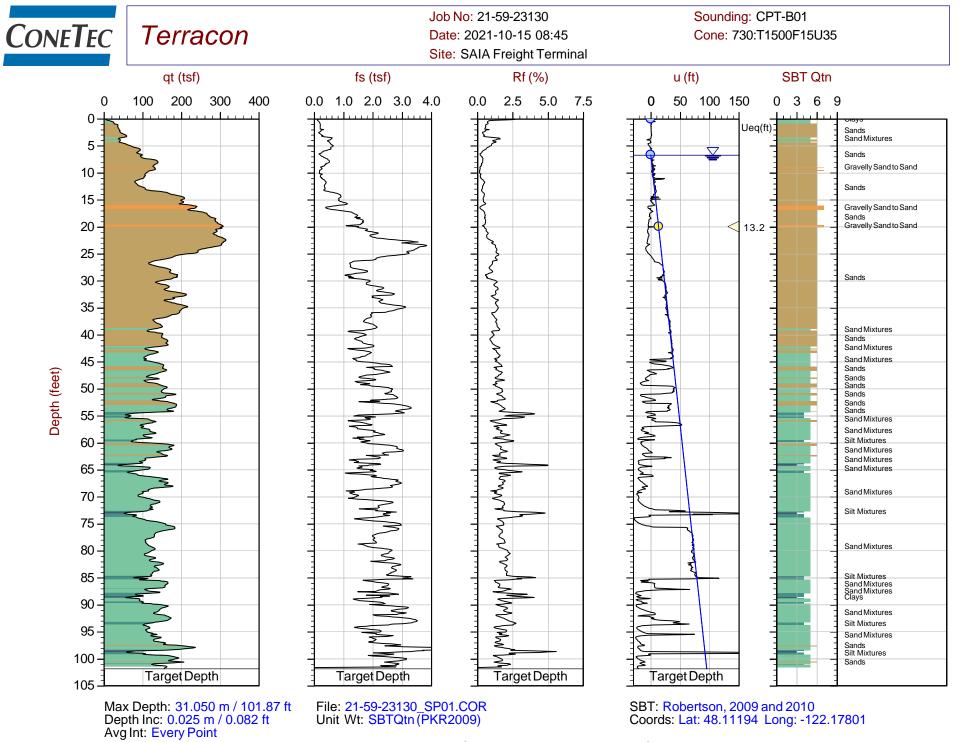
Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J., 1999, "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils", Canadian Geotechnical Journal, 36(2): 369-381. DOI: 10.1139/T98-105.

Teh, C.I., and Houlsby, G.T., 1991, "An analytical study of the cone penetration test in clay", Geotechnique, 41(1): 17-34. DOI: 10.1680/geot.1991.41.1.17.

The appendices listed below are included in the report:

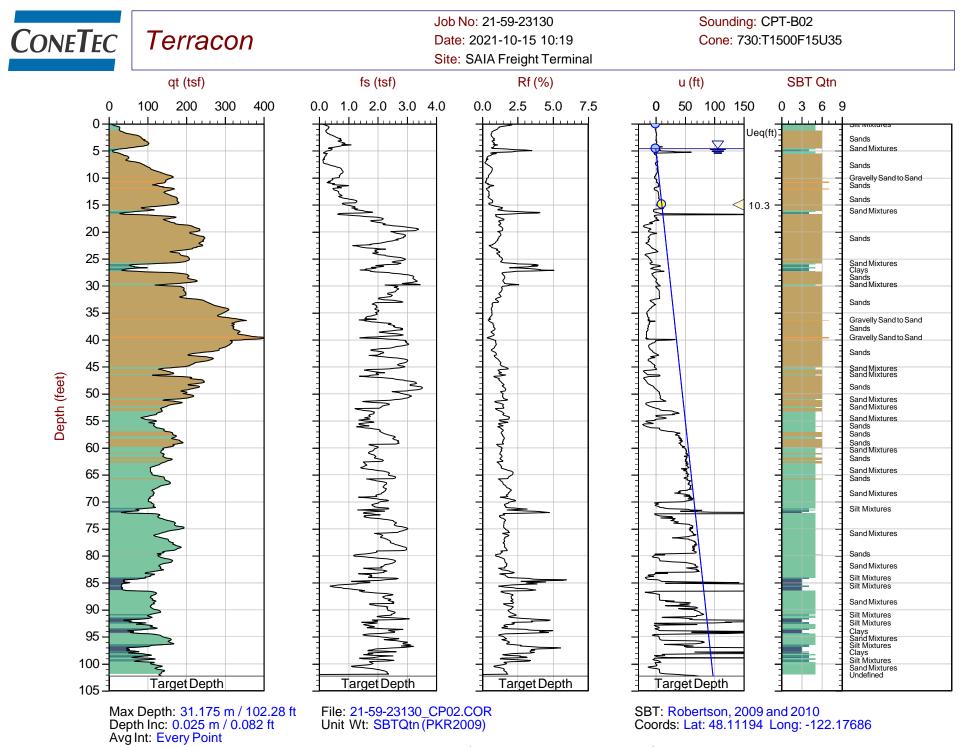
- Cone Penetration Test Summary and Standard Cone Penetration Test Plots
- Normalized Cone Penetration Test Plots
- Advanced Cone Penetration Test Plots with Ic, Su(Nkt), Phi and N(60)Ic/N1(60)Ic
- Seismic Cone Penetration Test Plots
- Seismic Cone Penetration Test Shear Wave (Vs) Tabular Results
- Seismic Cone Penetration Test Shear Wave (Vs) Traces
- Soil Behavior Type (SBT) Scatter Plots
- Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Cone Penetration Test Summary and Standard Cone Penetration Test Plots



	Job No:	21-59-23130
CONETEC	Client:	Terracon Consultants, Inc.
	Project:	SAIA Freight Terminal
	Start Date:	15-Oct-2021
	End Date:	15-Oct-2021

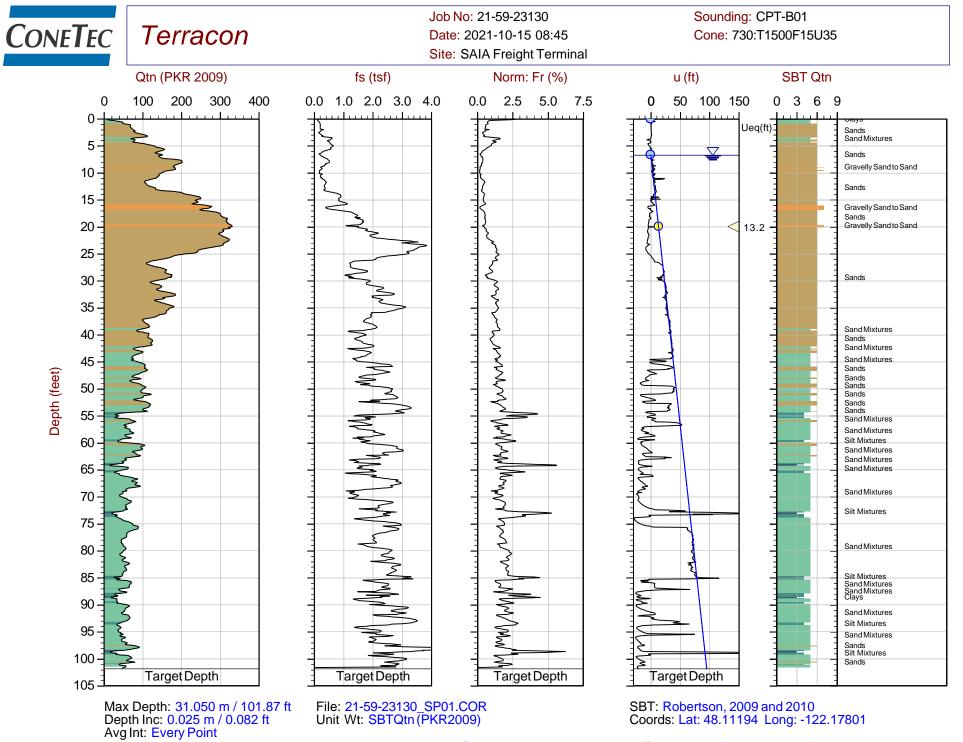
	CONE PENETRATION TEST SUMMARY							
Sounding ID	File Name	Date	Cone	Assumed ¹ Phreatic Surface (ft)	Final Depth (ft)	Shear Wave Velocity Tests	Latitude ² (deg)	Longitude ² (deg)
CPT-B01	21-59-23130_SP01	15-Oct-2021	730: T1500F15U35	6.7	101.9	31	48.11194	-122.17801
CPT-B02	21-59-23130_CP02	15-Oct-2021	730: T1500F15U35	4.6	102.3		48.11194	-122.17686
Totals	2 soundings				204.2	31		


1. Phreatic surface based on pore pressure dissipation test unless otherwise noted. Hydrostatic profile applied to interpretation tables

2. Coordinates were collected using a handheld GPS - WGS 84 Lat/Long

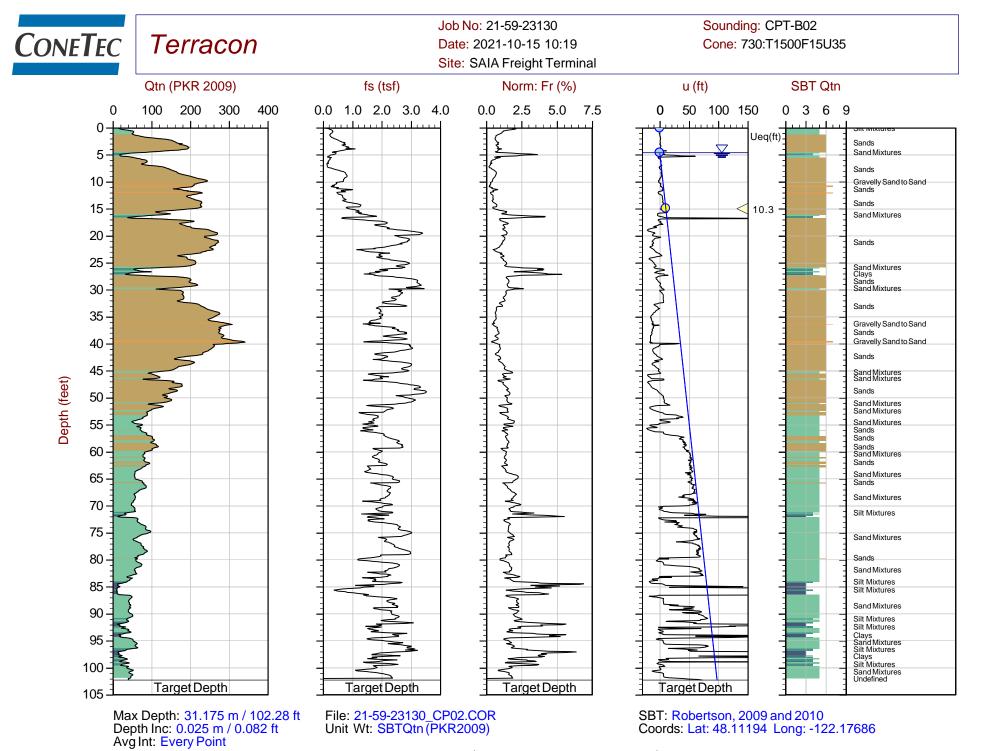
Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Hydrostatic Line



Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

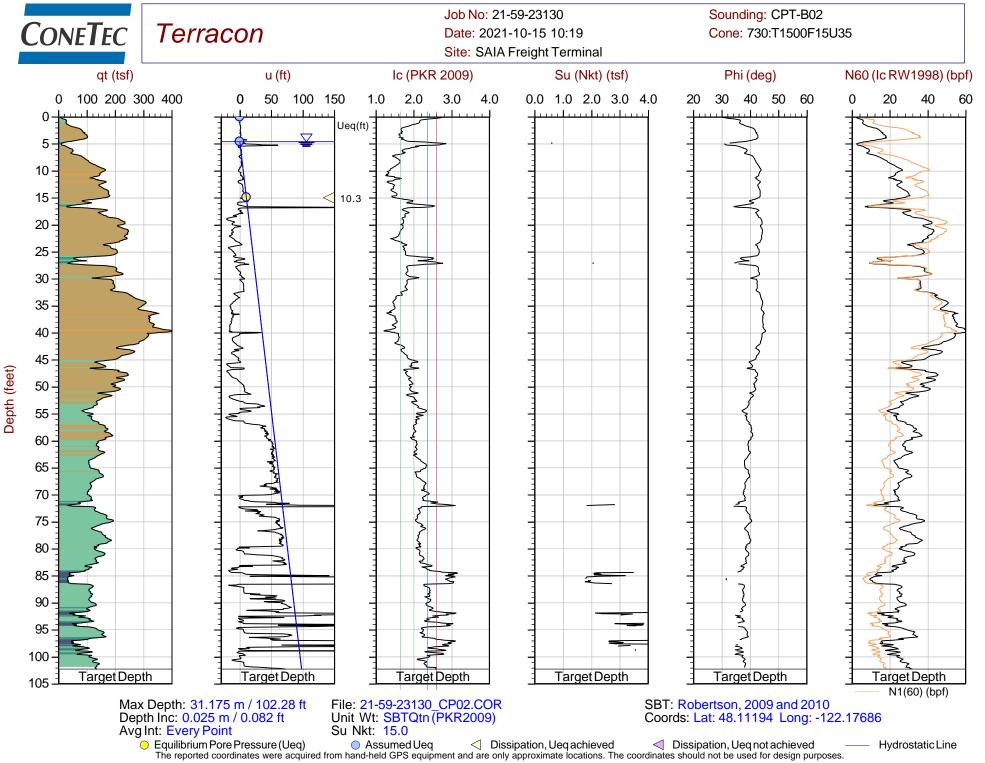
Hydrostatic Line


Normalized Cone Penetration Test Plots

Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

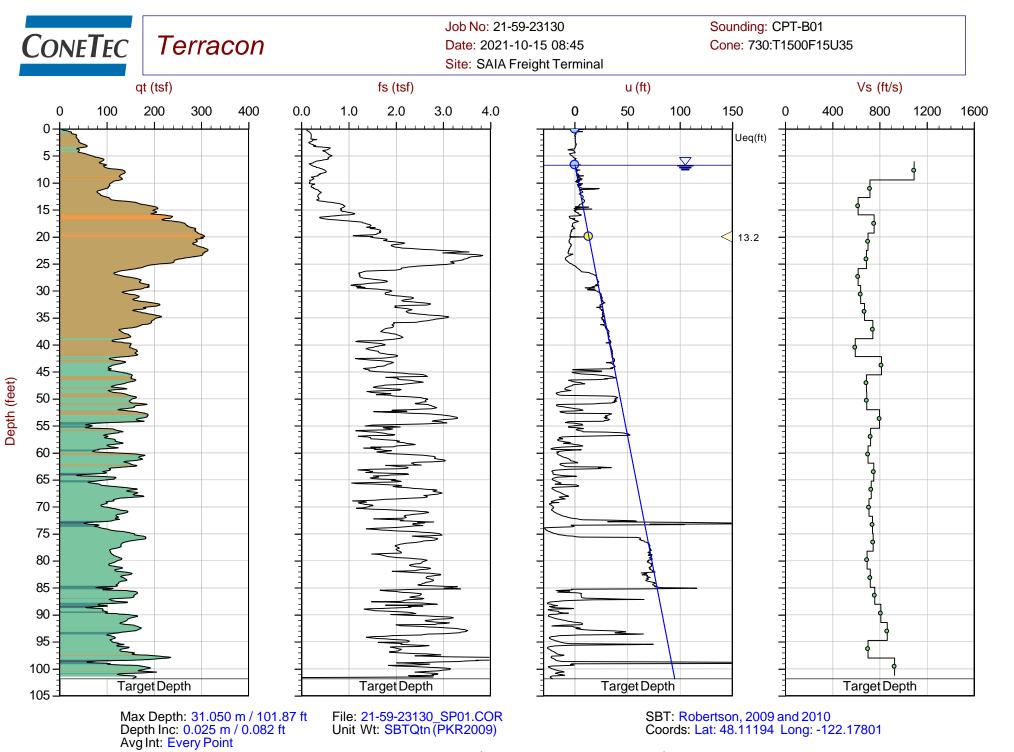
Hydrostatic Line




Equilibrium Pore Pressure (Ueq)
Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved
The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Hydrostatic Line

Advanced Cone Penetration Test Plots with Ic, Su, Phi and N(60)/N1(60)



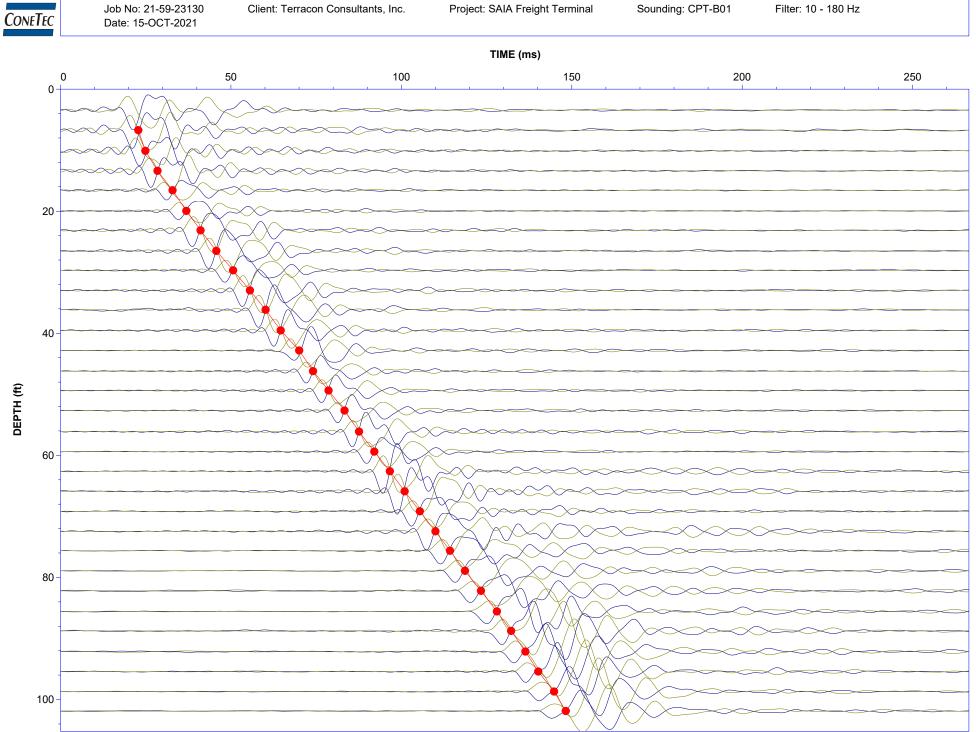
Seismic Cone Penetration Test Plots

Equilibrium Pore Pressure (Ueq)
 Assumed Ueq
 Dissipation, Ueq achieved
 Dissipation, Ueq not achieved
 The reported coordinates were acquired from hand-held GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Hydrostatic Line

Seismic Cone Penetration Test Shear Wave (Vs) Tabular Results

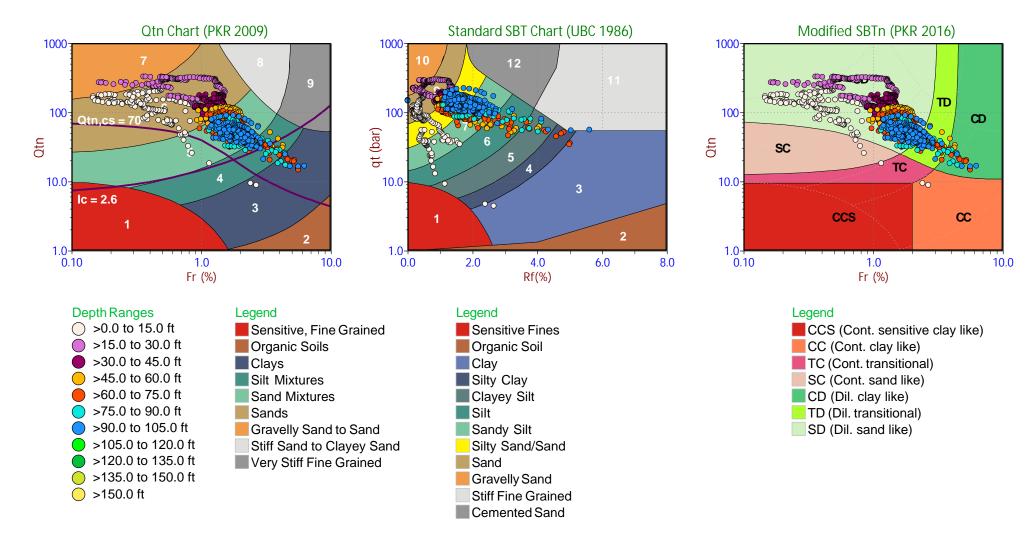
Job No: 21-59-23130 Client: Terracon Consultants, Inc. Project: SAIS Freight Terminal Sounding ID: CPT-B01 Date: 15-Oct-2021 Seismic Source: Beam Source Offset (ft): 8.69 Source Depth (ft): 0.00


Geophone Offset (ft):

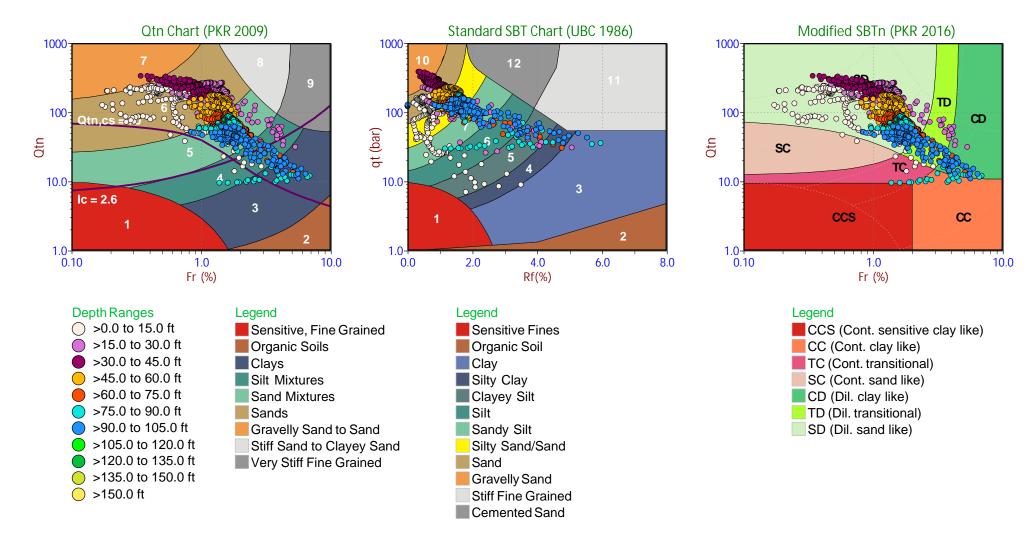
	SCPTu SHE	AR WAVE VELC	CITY TEST RES	ULTS - Vs	
Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
6.73	6.07	10.60			
10.10	9.45	12.84	2.24	2.05	1092
13.39	12.73	15.41	2.58	3.59	718
16.57	15.91	18.13	2.72	4.40	617
19.95	19.29	21.16	3.03	4.03	752
23.13	22.47	24.10	2.94	4.20	700
26.51	25.85	27.27	3.18	4.62	687
29.69	29.04	30.31	3.03	4.91	618
32.97	32.32	33.46	3.16	4.94	638
36.15	35.50	36.55	3.08	4.59	671
39.53	38.88	39.84	3.29	4.43	743
42.81	42.16	43.05	3.21	5.42	592
46.19	45.54	46.36	3.31	4.06	816
49.38	48.72	49.49	3.13	4.56	686
52.66	52.00	52.72	3.23	4.69	690
56.10	55.45	56.12	3.40	4.26	798
59.38	58.73	59.37	3.24	4.48	723
62.60	61.94	62.55	3.18	4.54	701
65.88	65.22	65.80	3.25	4.34	749
69.16	68.50	69.05	3.25	4.46	729
72.44	71.78	72.31	3.26	4.58	710
75.62	74.97	75.47	3.16	4.27	740
78.90	78.25	78.73	3.26	4.38	744
82.18	81.53	81.99	3.26	4.70	694
85.56	84.91	85.35	3.36	4.67	720
88.75	88.09	88.52	3.17	4.18	757
92.13	91.47	91.88	3.36	4.16	809
95.41	94.75	95.15	3.27	3.78	863
98.69	98.03	98.42	3.27	4.66	702
101.87	101.21	101.59	3.17	3.42	926

0.66

Seismic Cone Penetration Test Shear Wave (Vs) Traces



Soil Behavior Type (SBT) Scatter Plots

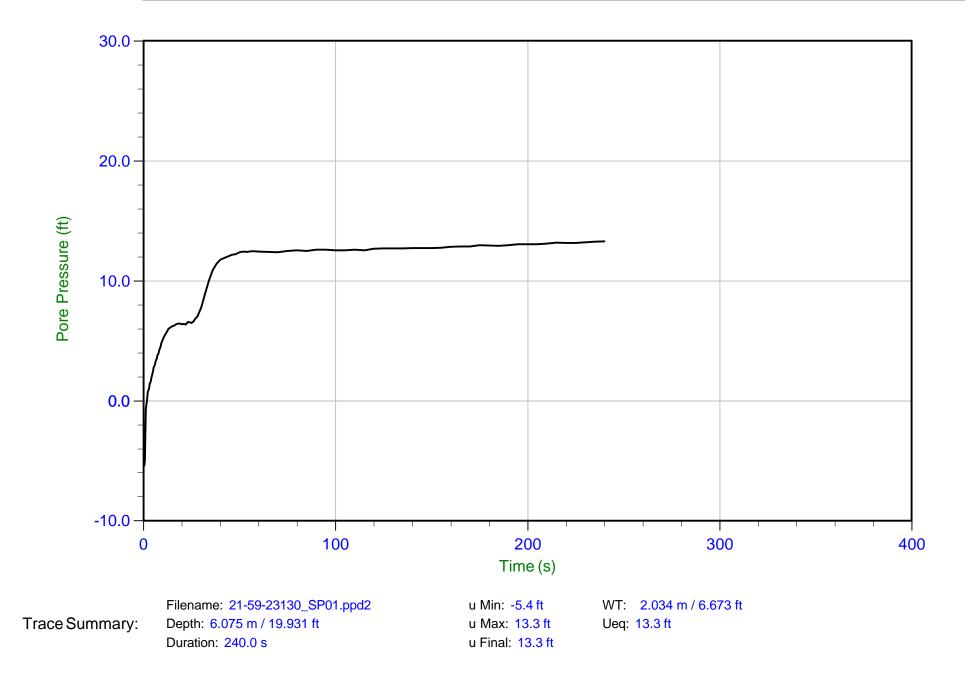

Constra	Tarraaan	
CONFIEC	Terracon	

Job No: 21-59-23130 Date: 2021-10-15 08:45 Site: SAIA Freight Terminal Sounding: CPT-B01 Cone: 730:T1500F15U35

ConeTec	Terracon

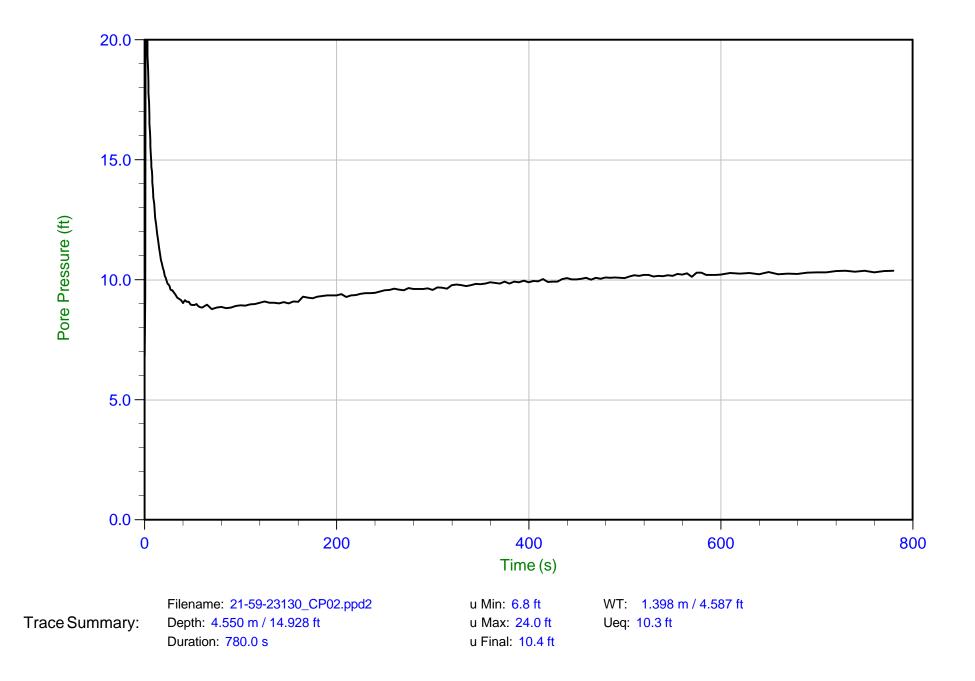
Job No: 21-59-23130 Date: 2021-10-15 10:19 Site: SAIA Freight Terminal Sounding: CPT-B02 Cone: 730:T1500F15U35

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots



Job No: Client: Project: Start Date: End Date: 21-59-23130 Terracon Consultants, Inc. SAIA Freight Terminal 15-Oct-2021 15-Oct-2021

CPTu PORE PRESSURE DISSIPATION SUMMARY						
Sounding ID	File Name	Cone Area (cm²)	Duration (s)	Test Depth (ft)	Estimated Equilibrium Pore Pressure U _{eq} (ft)	Calculated Phreatic Surface (ft)
CPT-B01	21-59-23130_SP01	15.0	240.0	19.9	13.3	6.7
CPT-B02	21-59-23130_CP02	15.0	780.0	14.9	10.3	4.6
Total Duration			17.0 min			



Job No: 21-59-23130 Date: 10/15/2021 08:45 Site: SAIA Freight Terminal Sounding: CPT-B01 Cone: 730:T1500F15U35 Area=15 cm²

Job No: 21-59-23130 Date: 10/15/2021 10:19 Site: SAIA Freight Terminal Sounding: CPT-B02 Cone: 730:T1500F15U35 Area=15 cm²

March 2022

GENERAL USE LEVEL DESIGNATION FOR BASIC (TSS), DISSOLVED METALS (ENHANCED), AND PHOSPHORUS TREATMENT

For

Oldcastle Infrastructure, Inc.'s The BioPod[™] Biofilter (Formerly the TreePod Biofilter)

Ecology's Decision

Based on Oldcastle Infrastructure, Inc. application submissions for The BioPod[™] Biofilter (BioPod), Ecology hereby issues the following use level designation:

- 1) General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus Treatment:
 - Sized at a hydraulic loading rate of 1.6 gallons per minute (gpm) per square foot (sq ft) of media surface area.
 - Constructed with a minimum media thickness of 18-inches (1.5-feet)
- 2) Ecology approves the BioPod at the hydraulic loading rate listed above, to achieve the maximum water quality design flow rate. The water quality design flow rates are calculated using the following procedures:
 - Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology- approved continuous runoff model.
 - Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using one of the three methods described in Chapter 2.7.6 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
 - Entire State: For treatment installed downstream of detention, the water quality design flow rate is the full 2-year release rate of the detention facility.
- 3) For systems that have a drain down outlet, designers must increase the water quality design flow rate calculated in Item 2, above, to account for the water that will enter the initial bay but won't be treated by the engineered soil. Multiply the flow rate determined above by 1.05

to determine the required flowrate for the BioPod unit.

4) The GULD has no expiration date, but may be amended or revoked by Ecology.

Ecology's Conditions of Use

The BioPod shall comply with these conditions:

- 1) Applicants shall design, assemble, install, operate, and maintain the BioPod installations in accordance with Oldcastle Infrastructure Inc.'s applicable manuals and the Ecology Decision.
- 2) The minimum size filter surface-area for use in Washington is determined by using the design water quality flow rate (as determined in Ecology Decision, Item 3, above) and the hydraulic loading rate (as identified in Ecology Decision, Item 1, above). Calculate the required area by dividing the water quality design flow rate (cu-ft/sec) by the hydraulic loading rate (converted to ft/sec) to obtain the required surface area (sq ft) of the BioPod unit.
- 3) BioPod media shall conform to the specifications submitted to and approved by Ecology.
- 4) The applicant tested the BioPod without plants. This GULD applies to the BioPod Stormwater Treatment System whether plants are included in the final product or not.
- 5) Maintenance: The required inspection/maintenance interval for stormwater treatment devices is often dependent on the efficiency of the device and the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of manufactured filter treatment device.
 - The BioPod is designed for a target maintenance interval of 1 year. Maintenance includes replacing the mulch, assessing plant health, removal of trash, and raking the top few inches of engineered media.
 - The BioPod system initially tested at the Lake Union Ship Canal Test Facility in Seattle, WA required maintenance after 1.5 months, or 6.3% of a water year. Monitoring personnel observed similar maintenance issues with other systems evaluated at the Test Facility. Runoff from the Test Facility may be unusual and maintenance requirements of systems installed at the Test Facility may not be indicative of typical maintenance requirements. Because of this, the initial version of the GULD required Oldcastle to subsequently "conduct hydraulic testing to obtain information about maintenance requirements on a site with runoff that is more typical of the Pacific Northwest". Quarterly testing from a 15-month maintenance frequency assessment conducted on a BioPod system installed along a roadway in Des Moines, WA indicated the system was able to treat a full water year before requiring maintenance.
 - Test results provided to Ecology from a BioPod System evaluated in a lab following New Jersey Department of Environmental Protection Laboratory Protocol for Filtration MTDs have indicated the BioPod System is capable of longer maintenance intervals.
 - Owners/operators must inspect BioPod systems for a minimum of twelve months from the start of post-construction operation to determine site-specific inspection/maintenance schedules and requirements. Owners/operators must conduct inspections monthly during the wet season, and every other month during the dry season. (According to the SWMMWW, the wet season in western Washington is October 1 to April 30. According

to the SWMMEW, the wet season in eastern Washington is October 1 to June 30.) After the first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.

- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flow rate and/or a decrease in pollutant removal ability.
- 6) Install the BioPod in such a manner that you bypass flows exceeding the maximum operating rate and you will not resuspend captured sediment.
- 7) Discharges from the BioPod shall not cause or contribute to water quality standard violations in receiving waters.

Approved Alternate Configurations

BioPod Internal Bypass

- 1) The BioPod Internal Bypass configuration may be combined with a Curb Inlet, Grated Inlet, and Piped-In Inlet. Water quality flows and peak flows are directed from the curb, overhead grate, or piped inlet to a contoured inlet rack. The inlet rack disperses water quality flows over the top surface of the biofiltration chamber. Excess flows are diverted over a curved bypass weir to the outlet area without passing through the treatment area. Both water quality flows and bypass flows are combined in the outlet area prior to being discharged out of the system.
- 2) To select a BioPod Internal Bypass unit, the designer must determine the size of the standard unit using the sizing guidance described above. Systems that have an internal bypass may use the off-line water quality design flow rate.
- 3) The internal bypass configuration has a maximum flow rate of 900 gallons per minute. Sites where the anticipated flow rate at the treatment device is larger than 900 gpm must use an external bypass, or size the treatment device for the on-line water quality design flow rate.

Applicant:	Oldcastle Infrastructure, Inc.
Applicant's Address:	7100 Longe St, Suite 100 Stockton, CA 95206

Application Documents:

BioPodTM Stormwater Filter Maintenance Frequency Assessment, Prepared for Oldcastle Infrastructure, Inc., Prepared by Herrera Environmental Consultants, Inc. February 2022

Technical Evaluation Report TreePod™ BioFilter System Performance Certification Project, Prepared for Oldcastle, Inc., Prepared by Herrera Environmental Consultants, Inc. February 2018 *Technical Memorandum: Response to Board of External Reviewers' Comments on the Technical Evaluation Report for the TreePodTM Biofilter System Performance Certification Project, Oldcastle, Inc. and Herrera Environmental Consultants, Inc., February 2018*

Technical Memorandum: Response to Board of External Reviewers' Comments on the Technical Evaluation Report for the TreePodTM Biofilter System Performance Certification Project, Oldcastle, Inc. and Herrera Environmental Consultants, Inc., January 2018

Application for Pilot Use Level Designation, TreePodTM Biofilter – Stormwater Treatment System, Oldcastle Stormwater Solutions, May 2016

Emerging Stormwater Treatment Technologies Application for Certification: The TreePod™ Biofilter, Oldcastle Stormwater Solutions, April 2016

Applicant's Use Level Request:

• General Use Level Designation as a Basic, Enhanced, and Phosphorus Treatment device in accordance with Ecology's *Stormwater Management Manual for Western Washington*

Applicant's Performance Claims:

Based on results from laboratory and field-testing, the applicant claims the BioPodTM Biofilter operating at a hydraulic loading rate of 153 inches per hour is able to remove:

- 80% of Total Suspended Solids (TSS) for influent concentrations greater than 100 mg/L and achieve a 20 mg/L effluent for influent concentrations less than 100 mg/L.
- 60% dissolved zinc for influent concentrations 0.02 to 0.3 mg/L.
- 30% dissolved copper for influent concentrations 0.005 to 0.02 mg/L.
- 50% or greater total phosphorus for influent concentrations 0.1 to 0.5 mg/L.

Ecology's Recommendations:

Ecology finds that:

• Oldcastle Infrastructure, Inc. has shown Ecology, through laboratory and field testing, that the BioPod[™] Biofilter is capable of attaining Ecology's Basic, Total Phosphorus, and Enhanced treatment goals.

Findings of Fact:

Field Testing

 Herrera Environmental Consultants, Inc. conducted monitoring of the BioPodTM Biofilter at the Lake Union Ship Canal Test Facility in Seattle Washington between November 2016 and April 2018. Herrera collected flow-weight composite samples during 14 separate storm events and peak flow grab samples during 3 separate storm events. The system was sized at an infiltration rate of 153 inches per hour or a hydraulic loading rate of 1.6 gpm/ft².

- $\circ~$ The D_{50} of the influent PSD ranged from 3 to 292 microns, with an average D_{50} of 28 microns.
- Influent TSS concentrations ranged from 17 mg/L to 666 mg/L, with a mean concentration of 98 mg/L. For all samples (influent concentrations above and below 100 mg/L) the bootstrap estimate of the lower 95 percent confidence limit (LCL 95) of the mean TSS reduction was 84% and the bootstrap estimate of the upper 95 percent confidence limit (UCL95) of the mean TSS effluent concentration was 8.2 mg/L.
- Dissolved copper influent concentrations from the 17 events ranged from 9.0 μ g/L to 21.1 μ g/L. The 21.1 μ g/L data point was reduced to 20.0 μ g/L, the upper limit to the TAPE allowed influent concentration range, prior to calculating the pollutant removal. A bootstrap estimate of the LCL95 of the mean dissolved copper reduction was 35%.
- Dissolved zinc influent concentrations from the 17 events ranged from 26.1 μ g/L to 43.3 μ g/L. A bootstrap estimate of the LCL95 of the mean dissolved zinc reduction was 71%.
- Total phosphorus influent concentrations from the 17 events ranged from 0.064 mg/L to 1.56 mg/L. All influent data greater than 0.5 mg/L were reduced to 0.5 mg/L, the upper limit to the TAPE allowed influent concentration range, prior to calculating the pollutant removal. A bootstrap estimate of the LCL95 of the mean total phosphorus reduction was 64%.
- The system experienced rapid sediment loading and needed to be maintained after 1.5 months. Monitoring personnel observed similar sediment loading issues with other systems evaluated at the Test Facility. The runoff from the Test Facility may not be indicative of maintenance requirements for all sites.
- Herrera Environmental Consultants, Inc. conducted a maintenance frequency assessment of the BioPod[™] installed along a roadway in Des Moines, WA between September 2020 and January 2022.
 - Herrera collected influent grab samples during 10 storm events and paired effluent samples during 5 storm events. Influent concentrations ranged from 1 mg/L to 164 mg/L, with a median concentration of 23 mg/L. Effluent concentrations ranged from 1 mg/L to 19 mg/L, with a median of 5 mg/L.
 - Herrera collected influent PSD samples during 3 storm events. The D₅₀ for the samples were 42, 1306, and 57 microns. The 1306 micron value was collected during an event with an influent TSS concentration of 1 mg/L. It is assumed this sample was atypical and that it contained a few grains of very coarse sand and almost no other particles.
 - Herrera used a water truck to conduct flow testing 7 times to assess how long the system could filter at the design flow rate without bypass. Results show the system was able to treat up to a full water year before the system needed maintenance.

Laboratory Testing

• Good Harbour Laboratories (GHL) conducted laboratory testing at their site in Mississauga, Ontario in October 2017 following the New Jersey Department of Environmental Protection Laboratory Protocol for Filtration MTDs. The testing evaluated a 4-foot by 6-foot standard biofiltration chamber and inlet contour rack with bypass weir. The test sediment used during the testing was custom blended by GHL using various commercially available silica sands, which had an average d_{50} of 69 μ m. Based on the lab test results:

- GHL evaluated removal efficiency over 15 events at a Maximum Treatment Flow Rate (MTFR) of 37.6 gpm, which corresponds to a MTFR to effective filtration treatment area ratio of 1.80 gpm/ft². The system, operating at 100% of the MTFR with an average influent concentration of 201.3 mg/L, had an average removal efficiency of 99 percent.
- GHL evaluated sediment mass loading capacity over an additional 16 events using an influent SSC concentration of 400 mg/L. The first 11 runs were evaluated at 100% of the MTFR. The BioPod began to bypass, so the remaining 5 runs were evaluated at 90% of the MTFR. The total mass of the sediment captured was 245.0 lbs and the cumulative mass removal efficiency was 96.3%.
- Herrera Environmental Consultants Inc. conducted laboratory testing in September 2014 at the Seattle University Engineering Laboratory. The testing evaluated the flushing characteristics, hydraulic conductivity, and pollutant removal ability of twelve different media blends. Based on this testing, Oldcastle Infrastructure, Inc. selected one media blend, Mix 8, for inclusion in their TAPE evaluation of the BioPod[™] Biofilter.
 - Herrera evaluated Mix 8 in an 8-inch diameter by 36-inch tall polyvinyl chloride (PVC) column. The column contained 18-inches of Mix 8 on top of 6-inches of pea gravel. The BioPod will normally include a 3-inch mulch layer on top of the media layer; however, this was not included in the laboratory testing.
 - Mix 8 has a hydraulic conductivity of 218 inches per hour; however, evaluation of the pollutant removal ability of the media was based on an infiltration rate of 115 inches per hour. The media was tested at 75%, 100%, and 125% of the infiltration rate. Based on the lab test results:
 - The system was evaluated using natural stormwater. The dissolved copper and dissolved zinc concentrations in the natural stormwater were lower than the TAPE influent standards; therefore, the stormwater was spiked with 66.4 mL of 100 mg/L Cu solution and 113.6 mL of 1,000 mg/L Zn solution.
 - The BioPod removed an average of 81% of TSS, with a mean influent concentration of 48.4 mg/L and a mean effluent concentration of 9.8 mg/L.
 - The BioPod removed an average of 94% of dissolved copper, with a mean influent concentration of 10.6 μ g/L and a mean effluent concentration of 0.6 μ g/L.
 - The BioPod removed an average of 97% of dissolved zinc, with a mean influent concentration of 117 μ g/L and a mean effluent concentration of 4 μ g/L.
 - The BioPod removed an average of 97% of total phosphorus, with a mean influent concentration of 2.52 mg/L and a mean effluent concentration of 0.066 mg/L. When total phosphorus influent concentrations were capped at the TAPE upper limit of 0.5 mg/L, calculations showed an average removal of 87%.

Other BioPod Related Issues to be Addressed by the Company:

1. None identified at this time.

Technology Description:	Download at
	https://oldcastleprecast.com/stormwater/bioretention- biofiltration-applications/bioretention-biofiltration-
	solutions/

Contact Information:

Applicant:	Chris Demarest Oldcastle Infrastructure, Inc. (925)667-7100 Chris demarest@oldcastle.com
	Chris.demarest@oldcastle.com

Applicant website:

https://oldcastleprecast.com/stormwater/

Ecology web link: <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies</u> Ecology: Douglas C. Howie, P.E.

Douglas C. Howie, P.E. Department of Ecology Water Quality Program (360) 870-0983 douglas.howie@ecy.wa.gov

Revision History

Date	Revision
March 2018	GULD granted for Basic Treatment
March 2018	Provisional GULD granted for Enhanced and Phosphorus Treatment
June 2016	PULD Granted
April 2018	GULD for Basic and Provisional GULD for Enhanced and Phosphorus granted, changed name to BioPod from TreePod
July 2018	GULD for Enhanced and Phosphorus granted
September 2018	Changed Address for Oldcastle
December 2018	Added minimum media thickness requirement
May 2019	Changed language on who must Install and maintain the device from Oldcastle to Applicants
August 2019	Added text on sizing using infiltration rate and water quality design flow rate
October 2019	Added text describing ability to use off-line design water quality flow rate for sizing due to internal bypass
December 2021	Extended approval to installations without plants, added sizing adjustment when using facilities with a drawdown outlet
March 2022	Added results from the maintenance frequency assessment to the Ecology's Conditions of Use and the Findings of Fact sections

APPENDIX D: OPERATIONS & MAINTENANCE

APPENDIX E: WWHM2012 MODEL OUTPUT

<section-header>

General Model Information

Project Name:	Stormwater Detention Pond
Site Name:	
Site Address:	128th ave ne
City:	
Report Date:	6/23/2022
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.200
Version Date:	2021/08/18
Version:	4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Flat	acre 11.011
Pervious Total	11.011
Impervious Land Use	acre
Impervious Total	0
Basin Total	11.011
Flomont Flows To:	

Element Flows To: Surface Int

Interflow

Groundwater

Mitigated Land Use

Basin

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 2.27
Pervious Total	2.27
Impervious Land Use PARKING FLAT POND	acre 7.561 1.18
Impervious Total	8.741
Basin Total	11.011

Element Flows To:		
Surface	Interflow	Groundwater
Detention Pond	Detention Pond	

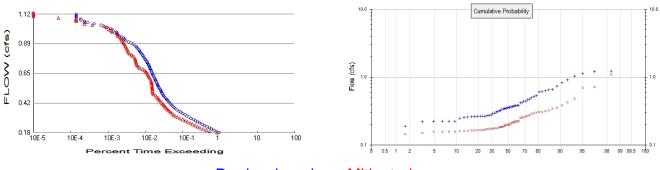
Routing Elements Predeveloped Routing

Mitigated Routing

Detention Pond

Bottom Length: Bottom Width: Depth:	186.62 ft. 186.62 ft. 6 ft.
Volume at riser head:	4.6747 acre-feet.
Side slope 1:	3 To 1
Side slope 2:	3 To 1
Side slope 3:	3 To 1
Side slope 4:	3 To 1
Discharge Structure	
Riser Height:	5 ft.
Riser Diameter:	18 in.
Notch Type:	Rectangular
Notch Width:	0.058 ft.
Notch Height:	2.444 ft.
Orifice 1 Diameter:	2.085 in. Elevation:0 ft.
Element Flows To: Outlet 1	Outlet 2

*Bottom Length, Bottom Width, and Slopes do not reflect the proposed design dimensions. The proposed design features the Depth, Outlet Structure and Volume dimensions specified in this report.


Pond Hydraulic Table

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$))))))
0.53330.8270.4330.0860.0000.60000.8300.4890.0910.0000.66670.8340.5440.0960.0000.73330.8370.6000.1010.000)))))))))))))))))))

0.913 0.916 0.920 0.924 0.927 0.931 0.935 0.938 0.942 0.946 0.950 0.953 0.957 0.961 0.965 0.968 0.972 0.976 0.980 0.983 0.972 0.976 0.980 0.983 0.987 0.991 0.995 0.999 1.003 1.006 1.010 1.014 1.022 1.026 1.030 1.033 1.037 1.041 1.045 1.049 1.053 1.057 1.061 1.065 1.069 1.073 1.077 1.081 1.085 1.089 1.093 1.097 1.101 1.085 1.089 1.093 1.097 1.101 1.105 1.091 1.13 1.077 1.041 1.085 1.089 1.093 1.097 1.101 1.105 1.091 1.13 1.077 1.081 1.085 1.089 1.093 1.097 1.101 1.105 1.091 1.13 1.077 1.081 1.085 1.089 1.093 1.097 1.101 1.105 1.091 1.13 1.077 1.081 1.085 1.093 1.097 1.101 1.105 1.091 1.13 1.077 1.081 1.093 1.097 1.101 1.13 1.077 1.081 1.093 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.091 1.13 1.077 1.081 1.092 1.013 1.092 1.013 1.092 1.013 1.013 1.013 1.014 1.015	$\begin{array}{c} 1.825\\ 1.886\\ 1.947\\ 2.009\\ 2.070\\ 2.132\\ 2.194\\ 2.257\\ 2.320\\ 2.383\\ 2.446\\ 2.509\\ 2.573\\ 2.637\\ 2.701\\ 2.766\\ 2.830\\ 2.895\\ 2.960\\ 3.026\\ 3.092\\ 3.158\\ 3.224\\ 3.290\\ 3.026\\ 3.092\\ 3.158\\ 3.224\\ 3.290\\ 3.357\\ 3.695\\ 3.763\\ 3.831\\ 3.900\\ 3.969\\ 4.039\\ 4.108\\ 4.389\\ 4.460\\ 4.531\\ 4.603\\ 4.674\\ 4.746\\ 4.818\\ 4.389\\ 4.460\\ 4.531\\ 4.603\\ 4.674\\ 4.746\\ 4.818\\ 4.891\\ 4.964\\ 5.037\\ 5.110\\ 5.183\\ 5.257\\ 5.331\\ 5.057\\ 5.057\\ 5.$	0.172 0.175 0.177 0.180 0.182 0.185 0.187 0.192 0.209 0.209 0.219 0.231 0.243 0.266 0.269 0.283 0.297 0.312 0.327 0.312 0.327 0.341 0.356 0.371 0.388 0.406 0.425 0.444 0.463 0.483 0.589 0.616 0.643 0.671 0.699 0.728 0.757 0.817 0.848 0.879 0.911 0.943 0.975 1.008 1.042 1.317 1.817 2.451 3.172 3.933 4.684 5.380 5.980 6.458	0.000 0.000 0.000
1.105 1.109 1.113 1.117 1.121 1.125 1.129	5.183 5.257 5.331 5.406 5.480 5.555 5.630	5.380 5.980 6.458 6.813 7.074 7.400 7.661	0.000 0.000
	0.916 0.920 0.924 0.927 0.931 0.935 0.938 0.942 0.946 0.950 0.953 0.957 0.961 0.965 0.968 0.972 0.976 0.980 0.983 0.987 0.991 0.995 0.999 1.003 1.006 1.010 1.014 1.022 1.026 1.030 1.033 1.037 1.041 1.045 1.049 1.053 1.057 1.061 1.049 1.053 1.057 1.061 1.077 1.081 1.085 1.089 1.077 1.081 1.085 1.089 1.093 1.097 1.101 1.105 1.093 1.097 1.113 1.117 1.121 1.125	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

6.0000	1.137	5.782	8.154	0.000
6.0667	1.141	5.858	8.388	0.000

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	11.011
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 2.27 Total Impervious Area: 8.741

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.3699745 year0.56755210 year0.71992825 year0.93793850 year1.119505

1.318073

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.214488
5 year	0.313142
10 year	0.394497
25 year	0.518084
50 year	0.627018
100 year	0.752011

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Predeveloped	wiitigate
1949	0.370	0.176
1950	0.378	0.200
1951	0.338	0.164
1952	0.267	0.158
1953	0.223	0.160
1954	1.209	0.184
1955	0.476	0.306
1956	0.420	0.344
1957	0.521	0.249
1958	0.376	0.177

$1959 \\ 1960 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 1969 \\ 1970 \\ 1971 \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1976 \\ 1977 \\ 1978 \\ 1979 \\ 1980 \\ 1981 \\ 1982 \\ 1983 \\ 1984 \\ 1985 \\ 1986 \\ 1987 \\ 1988 \\ 1989 \\ 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ 1996 \\ 1997 \\ 1998 \\ 1999 \\ 2000 \\ 2001 \\ 2002 \\ 2003 \\ 2004 \\ 2005 \\ 2006 \\ 2005 \\ 2006 \\ 2006 \\ 2005 \\ 2005 \\ $	0.373 0.348 0.657 0.324 0.535 0.385 0.321 0.188 0.381 0.464 1.128 0.266 0.420 0.310 0.293 0.634 0.258 0.266 0.224 0.266 0.740 0.347 0.272 0.353 0.601 0.363 0.439 1.033 0.493 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.260 0.345 0.255 0.271 0.224 0.246 0.361 0.616 1.226 0.226 0.221 0.089 0.336 0.263 0.443 0.308 0.820	0.185 0.208 0.301 0.163 0.174 0.145 0.201 0.165 0.167 0.214 0.173 0.386 0.182 0.215 0.193 0.158 0.173 0.159 0.172 0.157 0.161 0.291 0.169 0.424 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.293 0.714 0.291 0.169 0.225 0.158 0.254 0.199 0.225 0.351 0.132 0.254 0.196 0.326 0.191 0.269
2003	0.263	0.196
2004	0.443	0.326

Ranked Annual Peaks

Ranked AnnualPeaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated11.22561.0958

1	1.2256	1.0958
2	1.2086	0.7137
3	1.1276	0.6941

Duration Flows The Facility PASSED

Flow(cfs) 0.1850 0.1944 0.2039 0.2133 0.2227 0.2322 0.2416 0.2511 0.2605 0.2699	Predev 19885 17105 14861 12778 11052 9456 8243 7078 6173 5375	Mit 17543 11293 9300 7597 6271 5292 4652 3959 3407 2917	Percentage 88 66 62 59 56 55 56 55 55 55 55	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.2794 0.2888 0.2983 0.3077 0.3171 0.3266 0.3360 0.3455 0.3549 0.3643 0.3738 0.3738	4682 4105 3563 3153 2761 2466 2145 1900 1675 1512 1379 1253	2502 2188 1809 1535 1336 1209 1111 1014 937 872 812 750	53 53 50 48 48 49 51 53 55 57 58 59	Pass Pass Pass Pass Pass Pass Pass Pass
0.3927 0.4021 0.4115 0.4210 0.4304 0.4399 0.4493 0.4587 0.4682 0.4776 0.4871 0.4965 0.5059	1159 1069 1010 955 892 830 779 737 687 651 622 603 585	704 664 627 581 540 516 490 465 428 392 348 342 337	60 62 60 60 62 62 63 62 63 62 60 55 56 57	Pass Pass Pass Pass Pass Pass Pass Pass
0.5154 0.5248 0.5343 0.5437 0.5531 0.5626 0.5720 0.5814 0.5909 0.6003 0.6098 0.6192 0.6286 0.6381	562 539 508 489 473 457 440 424 414 394 380 368 354 341	333 330 328 324 320 319 316 313 309 299 287 275 266 253	59 61 64 66 67 69 71 73 74 75 75 75 74 75 74	Pass Pass Pass Pass Pass Pass Pass Pass
0.6475 0.6570 0.6664 0.6758	334 323 313 305	243 232 218 200	72 71 69 65	Pass Pass Pass Pass

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 Pass
--	--

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:1.1209 acre-feetOn-line facility target flow:1.6554 cfs.Adjusted for 15 min:1.6554 cfs.Off-line facility target flow:0.9366 cfs.Adjusted for 15 min:0.9366 cfs.

LID Report

LID Technique	Used for Treatment ?		Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Detention Pond POC		1763.93				0.00			
Total Volume Infiltrated		1763.93	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

POC #2 was not reported because POC must exist in both scenarios and both scenarios must have been run.

POC 3

POC #3 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Basin 11.01a	1 c			

Mitigated Schematic

Bas 11.0	in)1ac		
SI			
Dete All Pon	ention d		

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <-----File Name---->*** <File> <Un#> * * * <-ID-> 26 WDM Stormwater Detention Pond.wdm MESSII 25 PreStormwater Detention Pond.MES 27 PreStormwater Detention Pond.L61 28 PreStormwater Detention Pond.L62 POCStormwater Detention Pondl.dat 30 END FILES OPN SEOUENCE INGRP 10 INDELT 00:15 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 9 MAX END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 01 1 1 1 501 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 1 1 27 0 10 C, Forest, Flat END GEN-INFO *** Section PWATER*** ACTIVITY
 # # ATMP SNOW PWAT
 SED
 PST
 PWG
 PQAL
 MSTL
 PEST
 NITR
 PHOS
 TRAC

 10
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* 10 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 10
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 10
 0
 4.5
 0.08
 400
 0.05
 0.5
 0.996
 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD1000220INFILD DEEPFR1000220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * *
 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 10
 0.2
 0.5
 0.35
 6
 0.5
 0.7

 NND_DWAT_DARM4
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # ***
 CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 L0
 0
 0
 0
 0
 2.5
 1
 GWVS 10 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 *** # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 11.011 COPY 501 12 11.011 COPY 501 13 PERLND 10 PERLND 10 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO <PLS > ********** Print-flags ********* PIVL PYR # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 1.2 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 1.2 IMPLND 1 999 EXTNL PREC <Name> # # ***

END IMPLND

WDM 1 EVAP	ENGL	0.76	perlnd 1	999 EXTNL	PETINP
WDM 1 EVAP	ENGL	0.76	IMPLND 1	999 EXTNL	PETINP
END EXT SOURCES					
EXT TARGETS					
<-Volume-> <-Grp>	<-Member->	<mult>Tran</mult>	<-Volume->	<member> T</member>	sys Tgap Amd ***
<name> #</name>		5			tem strg strg***
COPY 501 OUTPUT	MEAN 11	48.4	WDM 501	FLOW E	NGL REPL
END EXT TARGETS					
MASS-LINK					
<volume> <-Grp></volume>			<target></target>	<-Grp>	<-Member->***
<name></name>		<-factor->	<name></name>		<name> # #***</name>
MASS-LINK PERLND PWATER	12 SUBO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	12	0.005555	COPI	INFUI	MEAN
MASS-LINK	13				
PERLND PWATER		0.083333	COPY	INPUT	MEAN
END MASS-LINK	13				

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Stormwater Detention Pond.wdm MESSU 25 MitStormwater Detention Pond.MES 27 MitStormwater Detention Pond.L61 28 MitStormwater Detention Pond.L62 POCStormwater Detention Pondl.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 11 IMPLND 14 IMPLND 1 1 RCHRES COPY COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Detention Pond 1 2 30 9 MAX END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # K *** # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 16 C, Lawn, Flat 1 1 27 1 1 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 16 0 0 1 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO

END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 16
 0
 0
 0
 0
 0
 0
 0
 0
 END PWAT-PARM1 PWAT-PARM2 AT-PARM2 <PLS > PWATER input info: Part 2 *** # - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC 6 0 4.5 0.03 400 0.05 0.5 0.996 <PLS > 16 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD1600220 AGWETP 0 BASETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * INTFW IRC LZETP *** 6 0.5 0.25
 # #
 CEPSC
 UZSN
 NSUR

 16
 0.1
 0.25
 0.25
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***

 # - # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 16
 0
 0
 0
 0
 2.5
 1

 GWVS 16 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** 1 1 1 27 0 1 1 1 27 0 11 PARKING/FLAT 14 POND END GEN-INFO *** Section IWATER*** ACTIVITY
 # # ATMP SNOW IWAT SLD
 IWG IQAL

 11
 0
 0
 1
 0
 0

 14
 0
 0
 1
 0
 0
 0
 * * * END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI ***
 11
 0
 0
 0
 0
 0

 14
 0
 0
 0
 0
 0
 0
 END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 NSUR # - # *** LSUR SLSUR NSUR RETSC

114000.010.10.1144000.010.10.1 END IWAT-PARM2 IWAT-PARM3 * * * <PLS > IWATER input info: Part 3 # - # ***PETMAX PETMIN 11 0 0 14 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 11 0 14 0 0 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin*** 2.27RCHRES122.27RCHRES137.561RCHRES151.18RCHRES15 PERLND 16 PERLND 16 IMPLND 11 IMPLND 14 ******Routing***** 2.27COPY1127.561COPY1151.18COPY1152.27COPY1131COPY50116 perlnd 16 IMPLND 11 IMPLND 14 PERLND 16 RCHRES 1 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----- User T-series Engl Metr LKFG * * * in out 1 Detention Pond 1 1 1 1 28 0 1 END GEN-INFO *** Section RCHRES*** ACTIVITY END ACTIVITY PRINT-INFO * * * * * * * * * 1 END PRINT-INFO

HYDR-PARM1

	VC A1 A2 FG FG FG		for each le exit		ole exit	FUNCT for possible ***	
1 END HYDR-	0 1 0		0 0 0	0 (0 0 0	2 2 2	2 2
HYDR-PARM # - #	FTABNO	LEN	DELTH	STCOR			* * * * * *
2>< 1 END HYDR- HYDR-INIT	PARM2	0.04		0.0	<><- 0.5		^ ^ ^
RCHRES # - #	Initial c *** VOL ** ac-ft	onditions : Initia for eacl	l value h possible	of COLIND e exit	Initial for each	value of (possible ex:	*** DUTDGT it
1 END HYDR- END RCHRES	0					0.0 0.0 0.0	
SPEC-ACTION END SPEC-AC FTABLES FTABLE 91 4	TIONS 1						
Depth (ft) 0.000000 0.066667 0.133333 0.200000 0.266667 0.333333 0.400000 0.466667 0.533333 0.600000 0.666667 0.733333 0.800000 0.866667 0.933333 1.000000	Area (acres) 0.799524 0.802955 0.806393 0.813292 0.816752 0.820220 0.823695 0.827178 0.830668 0.834165 0.834165 0.837669 0.841181 0.844700 0.848227 0.851761	Volume (acre-ft) 0.000000 0.053416 0.107061 0.160935 0.215040 0.269374 0.323940 0.378737 0.433767 0.439028 0.544522 0.600250 0.656212 0.712408 0.768839 0.825505 0.882407 0.939546 0.996921 1.054533 1.112384 1.170472 1.228800 1.287367 1.346173 1.405220 1.464507 1.524036 1.583806 1.643819 1.704074 1.583806 1.643819 1.704074 1.583806 1.643819 1.704074 1.583806 1.643819 1.704074 1.524036 1.583806 1.643819 1.704074 1.524036 1.583806 1.643819 1.704074 1.524036 1.643819 1.704074 1.524036 1.643819 1.704074 1.524036 1.643819 1.704074 1.947532 2.009008 2.070729 2.132697 2.194912 2.257373 2.320082 2.383040	(cfs) 0.000000 0.030460 0.043076 0.052758 0.060919 0.068110 0.074611 0.080589 0.086153 0.091379 0.096322 0.101023 0.105515 0.109824 0.113970 0.117970	Velocity (ft/sec)	Travel Time (Minutes)	2***	

2.800000 0.949 2.866667 0.953 2.93333 0.957 3.000000 0.961 3.066667 0.964 3.133333 0.968 3.200000 0.972 3.266667 0.976 3.333333 0.980 3.400000 0.983 3.466667 0.987 3.53333 0.991 3.600000 0.995 3.666667 0.999 3.73333 1.002 3.800000 1.006 3.866667 1.010 3.93333 1.014 4.000000 1.018 4.066667 1.022 4.133333 1.026 4.200000 1.030 4.266667 1.033 4.33333 1.041 4.400000 1.041 4.466667 1.045 4.53333 1.049 4.600000 1.053 4.666667 1.057 4.73333 1.061 4.800000 1.065 4.866667 1.069 4.93333 1.073 5.000000 1.077 5.066667 1.081 5.13333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.010 5.466667 1.021 4.800000 1.077 5.066667 1.081 5.13333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.093 5.33333 1.099 5.266667 1.107 5.73333 1.091 5.600000 1.113 5.666667 1.129 5.93333 1.121 5.800000 1.125 5.866667 1.129 5.93333 1.133 6.000000 1.137 END FTABLE 1 END FTABLE 1	692 2.509700 439 2.573405 194 2.637359 955 2.701564 724 2.766020 501 2.830727 284 2.895687 075 2.960899 874 3.026364 679 3.092082 492 3.158055 313 3.224282 141 3.290763 976 3.357501 818 3.424494 668 3.491743 525 3.559250 389 3.627013 261 3.695035 140 3.763315 027 3.831854 921 3.900652 822 3.969710 731 4.039029 646 4.108608 570 4.178449 500 4.248551 438 4.318916 384 4.389543 336 4.460434 296 4.531588 263 4.674690 220 4.746639 209 4.818853 210 4.964081 222 5.037095 240 5.110377 266 5.183927 300 5.257746 341 5.331834 389 5.406192 444 5.480820 507 5.555718 577 5.630888 655 5.706329	0.219541 0.231089 0.243408 0.256355 0.269814 0.283690 0.297900 0.312373 0.327045 0.341857 0.356758 0.371699 0.388456 0.406533 0.425080 0.444082 0.463527 0.483405 0.589451 0.616167 0.643419 0.671196 0.699488 0.728284 0.757574 0.787350 0.817604 0.817604 0.848327 0.879511 0.911150 0.943236 0.975763 1.008724 1.042114 1.317562 1.817073 2.451802 3.172881 3.933284 4.684664 5.380176 5.980023 6.458714 6.813644 7.074786 7.400943 7.661391 7.912053 8.153959				
EXT SOURCES <-Volume-> <membe <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP</name></name></membe 	r> SsysSgap<1 # tem strg<-fa ENGL 1.2 ENGL 1.2 ENGL 0.76 ENGL 0.76	actor->strg	<name> PERLND IMPLND PERLND</name>	vols> <-Gr # # L 999 EXTNI L 999 EXTNI L 999 EXTNI L 999 EXTNI	<name> L PREC L PREC L PETINP</name>	
END EXT SOURCES						
EXT TARGETS <-Volume-> <-Grp> <name> # RCHRES 1 HYDR RCHRES 1 HYDR COPY 1 OUTPUT COPY 501 OUTPUT END EXT TARGETS</name>	<pre><name> # #<-fa RO 1 1 STAGE 1 1 MEAN 1 1</name></pre>		<name> WDM 1000 WDM 1000 WDM 700</name>	> <member> ‡ <name>) FLOW L STAG L FLOW L FLOW</name></member>	Tsys Tgap tem strg ENGL ENGL ENGL ENGL	

MASS-LINK <volume> <-Grp></volume>	<-Member->	<mult></mult>	<target></target>	<-Grp>	<-Member->***
<name></name>	<name> # #<</name>		<name></name>	CIP,	<name> # #***</name>
MASS-LINK PERLND PWATER END MASS-LINK	2 SURO 2	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	COPY	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	COPY	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРУ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com