

STORMWATER TECHNICAL INFORMATION REPORT STRAWBERRY FIELDS CONVERSION MARYSVILLE, WASHINGTON

Submitted by: CEKO, L.L.C. 2255 Squak Mountain Loop, SW Issaquah, Washington 98027

CEKO PN: 22007.01

For: City of Marysville 80 Columbia Avenue Marysville, Washington 98270

October 31, 2022

Prepared by:

Christopher P. Kovac, P.E., LEED[®]AP Principal Engineer

C:\CEKO\Projects\Active\22007.01-Strawberry-Fields\Engineering\TIR\Strawberry-Fields-Stormwater-TIR-2022-10-17.docx

TABLE OF CONTENTS

1.0	PRO	IECT OVERVIEW	1-1			
	1.1	EXISTING CONDITIONS SUMMARY	1-1			
	1.2	PROPOSED SITE CONDITIONS	1-2			
2.0	DETERMINATION OF APPLICABLE MINIMUM REQUIREMENTS					
	2.1	MINIMUM REQUIREMENT 1: PREPARATION OF STORMWATER				
		SITE PLANS	2-1			
	2.2	MINIMUM REQUIREMENT 2: STORMWATER POLLUTION				
		PREVENTION PLAN	2-1			
	2.3	MINIMUM REQUIREMENT 3: SOURCE CONTROL OF				
		POLLUTION	2-1			
	2.4	MINIMUM REQUIREMENT 4: PRESERVATION OF NATURAL				
		DRAINAGE SYSTEMS AND OUTFALLS	2-1			
	2.5	MINIMUM REQUIREMENT 5: ON-SITE STORMWATER				
		MANAGEMENT	2-1			
	2.6	MINIMUM REQUIREMENT 6: RUNOFF TREATMENT	2-2			
	2.7	MINIMUM REQUIREMENT 7: FLOW CONTROL	2-2			
	2.8	MINIMUM REQUIREMENT 8: WETLANDS PROTECTION	2-2			
	2.9	MINIMUM REQUIREMENT 9: OPERATION AND				
		MAINTENANCE	2-3			
3.0	SITE	ANALYSIS	3-1			
	3.1	OFF-SITE SUMMARY	3-1			
	3.2	DOWNSTREAM ANALYSES	3-1			
	3.3	UPSTREAM ANALYSIS	3-1			
4.0	DEVE	ELOPMENT LAYOUT	4-1			
	4.1	ON-SITE STORMWATER MANAGEMENT OVERVIEW	4-1			
	4.2	ON-SITE STORMWATER MANAGEMENT	4-1			
	4.3	FLOW CONTROL	4-1			
		4.3.1 Existing Site Hydrology	4-1			
		4.3.2 On-Site Stormwater Best Management Practices	4-2			
		4.3.3 Proposed Developed Site Hydrology	4-2			
	4.4	WATER QUALITY SYSTEM	4-3			
5.0	CON	VEYANCE SYSTEM ANALYSIS AND DESIGN	5-4			
6.0	SPEC	IAL REPORTS AND STUDIES	6-1			
7.0	ОТНІ	ER PERMITS	7-1			

8.0	OPERATION AND MAINTENANCE MANUAL	·1
9.0	SECURITY DEVICE	-1
10.0	REFERENCES	·1

FIGURES

- Figure 1 Site Location Map
- Figure 2 Existing Conditions
- Figure 3 Flow Chart for Determining Requirements for Development
- Figure 4A USDA NRCS Soils Map
- Figure 4B USDA NRCS Soils Map Legend
- Figure 4C USDA NRCS Soils Map Legend Description
- Figure 4D USDA NRCS Soils Map Unit Description
- Figure 4E USDA NRCS Soils Map Unit Description (continued)
- Figure 5 FEMA Flood Hazard Map
- Figure 6 Proposed Conditions

APPENDICES

- Appendix A Site Areas Summary
- Appendix B Memorandum Geotechnical Considerations
- Appendix C Stormwater Management System Modeling Report
- Appendix D Conveyance Capacity Calculations
- Appendix E Operation and Maintenance Documentation

1.0 PROJECT OVERVIEW

CEKO, L.L.C. (CEKO) has prepared this Stormwater Technical Information Report (TIR) for the Strawberry Fields Conversion project. The project work area consists of a portion of Snohomish County Parcel No. 31053400100500 at 6100 152nd Street Northeast in Marysville, Washington (herein referred to as the Property), an approximately 39.18-acre parcel of land developed as a City of Marysville-owned public park with athletic fields, walking trails, a picnic shelter, and a restroom building (Figures 1 and 2). The intent of the proposed redevelopment is to convert existing natural grass fields to synthetic turf. The Property is within the City of Marysville limits, and the project will be subject to the jurisdictional requirements of the City of Marysville and requirements of the Washington State Department of Ecology.

This TIR has been prepared to fulfill a requirement of the construction permit application to The City of Marysville Public Works Development Services and describes how the proposed project design complies with requirements established by the Marysville Municipal Code (MMC) and the adopted *2012 Stormwater Management Manual for Western Washington, as Amended in December 2014* dated December 2014 (SWMMWW 2014).

Per the flow chart in Figure I-2.4.2 of SWMMWW 2014 (Figure 3), Minimum Requirements 1 through 9 apply to new and replaced hard surfaces and converted vegetation.

1.1 EXISTING CONDITIONS SUMMARY

The Property is an approximately 39.18-acre parcel of land, west of the intersection of 152nd Street Northeast and 67th Avenue Northeast. The Property is bordered by 152nd Street Northeast to the north and by adjacent private properties to the east, south, and west.

Approximately 95,000 square feet of land on the Property, in the portion of the Property that is known as Field 2, an existing natural grass athletic field, is planned to be disturbed and restored with construction of the proposed field conversion and associated improvements (herein referred to as the Site). Site improvement areas are confined within the boundaries of the Property, with no work proposed to occur within the adjacent 152nd Street Northeast right-of-way.

Site areas are tabulated in Appendix A. Existing Site conditions are depicted on Figure 2.

Based on the U.S. Department of Agriculture (USDA) National Resources Conservation Service (NRCS) Web Soil Survey Soil Resource Report (2022), the Site is underlain with Norma loam (Figures 4A through 4E). According to the USDA, Norma series soils consist of deep, poorly drained soils, formed in old alluvium in depressions on glacial till plains and drainageways. Slopes are 0 to 3 percent. A project-specific geotechnical report is provided in Appendix B.

The Site is identified on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map No. 53061C0395E as being in a Zone X area (FEMA 2020). Zone X areas are those areas determined to be of minimal flood hazard (Figure 5).

Under existing conditions runoff from the Site and Property is collected and conveyed to an existing combined stormwater treatment wetlands and detention facility, previously sized via a continuous runoff timeseries method to manage runoff from the Property. The combined stormwater treatment wetlands and detention facility discharges via overflows to a natural wetlands area that is associated with and tributary to the Middle Fork of Quilceda Creek.

1.2 PROPOSED SITE CONDITIONS

Improvement areas are estimated to comprise approximately 95,000 square feet of the Site. The proposed improvements will follow the requirements of the City of Marysville. The proposed Site improvements are anticipated to include the following:

- A new concrete field curb, around the perimeter of Field #2;
- Synthetic turf surfacing over the extent of Field #2;
- New drainage facilities, beneath and extending from Field #2 to the existing stormwater pond;
- Athletic field site amenities; and
- Restoration of disturbed areas.

Under proposed conditions, runoff flows from the Site, Field #2, will be attenuated via detention in the void volume of the field's base-rock gravel bed. Limited infiltration from the bottom of the field's base-rock gravel bed will manage a portion of the Site runoff. Runoff from the Site and Property will continue to be collected and conveyed to the aforementioned existing combined stormwater treatment wetlands and detention facility. The stormwater treatment wetlands and detention facility will continue to discharge via overflow to a natural wetlands area that is tributary to the Middle Fork of Quilceda Creek.

Proposed conditions are depicted on Figure 6.

2.0 DETERMINATION OF APPLICABLE MINIMUM REQUIREMENTS

Per the flow chart in Figure I-2.4.2 of SWMMWW 2014 (Figure 4), Minimum Requirements 1 through 9 apply to new and replaced hard surfaces and all disturbed land. Descriptions of how the project design meets each of the Minimum Requirements are discussed below.

2.1 MINIMUM REQUIREMENT 1: PREPARATION OF STORMWATER SITE PLANS

Prepared in conjunction with this TIR, a stormwater site plan, consistent with the requirements described in 2014 SWMMWW Volume I, is provided as part of the project construction permit plans. After review by the jurisdiction, a revised final stormwater site plan will be submitted as part of the project construction permit application plans.

2.2 MINIMUM REQUIREMENT 2: STORMWATER POLLUTION PREVENTION PLAN

A Construction Stormwater Pollution Prevention Plan will be prepared and submitted under separate cover with the anticipated grading permit application.

2.3 MINIMUM REQUIREMENT 3: SOURCE CONTROL OF POLLUTION

Although the fields generally not generators of pollutants, source control will be provided through the application of source control best management practices (BMPs) during construction, and on the developed Site following construction. Selected BMPs will be appropriate for the proposed construction activities, buildings, facilities, and intended post-development Site uses in accordance with 2014 SWMMWW Volume IV.

2.4 MINIMUM REQUIREMENT 4: PRESERVATION OF NATURAL DRAINAGE SYSTEMS AND OUTFALLS

The existing natural location of discharge will remain unchanged. Runoff from the Site and Property will continue to be collected and conveyed to the aforementioned existing combined stormwater wetlands and detention facility. The stormwater wetlands and detention facility will continue to discharge via overflow to a natural wetlands area that is tributary to the Middle Fork of Quilceda Creek.

2.5 MINIMUM REQUIREMENT 5: ON-SITE STORMWATER MANAGEMENT

On-Site stormwater management will be provided in accordance with the requirements of 2014 SWMMWW Volume I, Chapters 2 and 4; and Volume III, Chapter 3; Volume V, Chapter 5. This requirement will be met via limited infiltration from the bottom of the field's base-rock gravel bed to manage a portion of the Site runoff.

2.6 MINIMUM REQUIREMENT 6: RUNOFF TREATMENT

The existing on-Site stormwater treatment wetlands facility can be expected to meet or exceed the following water quality treatment requirements:

- For existing natural grass areas, Phosphorous control requirements specified in 2014 SWMMWW Volume V-3.3, Phosphorous Treatment Menu. To meet this requirement, the stormwater treatment facilities were designed to achieve a goal of 50 percent total phosphorous removal for a range of influent concentrations of 0.1 to 0.5 mg/l total phosphorous.
- Fore proposed synthetic turf areas, Enhanced treatment requirements specified in 2014 SWMMWW Volume V-3.4, Enhanced Treatment Menu. To meet this requirement, the stormwater treatment facilities were designed to achieve performance goals of at least 80 percent removal of total suspended solids, at least 30 percent removal of dissolved copper, and at least 60 percent removal of dissolved zinc.

The existing combined stormwater wetlands and detention facility will continue to provide water quality treatment same as for the existing field. The converted field can be anticipated to release little to no phosphorous but more metals. The existing stormwater treatment wetlands can be expected to provide treatment meeting the enhanced treatment requirements of the 2014 SWMMWW Volume V-3.4, Enhanced Treatment Menu.

2.7 MINIMUM REQUIREMENT 7: FLOW CONTROL

Stormwater runoff for the proposed developed Site condition, as calculated using 15-minute time step increase in the 100-year recurrence interval flow using a continuous simulation runoff model, must match that of the predeveloped condition for all flows. The proposed Site stormwater system, which will provide detention in the void volume of the field base-rock gravel bed, can be expected to meet this requirement. Modeling of the system using the WWHM verified the anticipated compliance. WWHM modeling reports are provided in Appendix C. Flow attenuation provided by the field base-rock detention system will be in addition to flow attenuation provided by the existing combined stormwater treatment wetlands and detention facility that serves the Property.

2.8 MINIMUM REQUIREMENT 8: WETLANDS PROTECTION

As described above, the existing stormwater treatment wetlands and detention facility discharges via overflows to a natural wetlands area that is associated with and tributary to Quilcene Creek. This existing facility will continue to protect the existing wetlands via water quality treatment and by allowing continued supply of runoff water to the wetlands.

2.9 MINIMUM REQUIREMENT 9: OPERATION AND MAINTENANCE

Operation and maintenance of the stormwater management facilities will be the responsibility of the City of Marysville, and that responsibility will be passed to future owners.

3.0 SITE ANALYSIS

3.1 OFF-SITE SUMMARY

A review of downstream flow paths was performed as part of the project design work. Off-Site analyses consisted of inspection field walks of the project Site and downstream areas, review of topographic mapping of the Property and adjacent areas, and review of the City of Marysville and Snohomish County Geographic Information Systems databases.

3.2 DOWNSTREAM ANALYSES

Under existing and proposed conditions, stormwater runoff from the Site generally is conveyed southward via sheet flow and then via a system of catch basins and conveyance pipes. As described in Section 1.1, runoff from the Site and Property is collected and conveyed to an existing combined stormwater treatment wetlands and detention facility. The combined stormwater treatment wetlands and detention facility discharges via overflows to a natural wetlands area that is associated with and tributary to the Middle Fork of Quilceda Creek.

According to the Washington State Department of Natural Resources Forest Practices Application Mapping Tool, Quilceda Creek conveys flows southward, approximately 1.7-miles as a type F water course and then another approximately 5.3-miles as a Type S water course, to an eventual discharge to Puget Sound near Ebey Slough and the mouth of the Snohomish River, immediately north of downtown Everett.

3.3 UPSTREAM ANALYSIS

The surrounding area is developed such that limited, if any, off-Property stormwater runoff drains onto the Property. The upstream areas that might drain onto the Property are vegetated areas of the properties along the western boundary of the Property. Stormwater runoff from the west-adjacent properties likely infiltrates or is conveyed southward approximately along the existing property boundary without impact to the on-Site stormwater drainage conditions or management facilities. No changes are anticipated or proposed.

4.0 DEVELOPMENT LAYOUT

A depiction of the proposed developed Site condition is provided as Figure 6, including proposed buildings, pavement, stormwater management system, retaining walls, and restoration of anticipated disturbed Site areas.

4.1 ON-SITE STORMWATER MANAGEMENT OVERVIEW

A simple but effective stormwater management system is proposed to control runoff from the proposed developed Site condition, and, per applicable requirements, to match the predeveloped condition of the Site. Summary of the proposed stormwater management system is provided in Section 4.3.2, Proposed Developed Site Hydrology and shown on Figure 6.

4.2 ON-SITE STORMWATER MANAGEMENT

For this project, the following BMPs were considered:

- Dispersion;
- Bioretention;
- Infiltration; and
- Detention.

The entire Site area will be resurfaced with synthetic turf, rendering bioretention infeasible. Because land is not available on the Property, dispersion also is not considered feasible. The underlying soils allow for only limited infiltration; therefore, full infiltration was considered unfeasible to manage stormwater fully. However, limited infiltration was included in the sizing of the detention system. The only feasible singular BMP for on-Site stormwater management is detention.

4.3 FLOW CONTROL

4.3.1 Existing Site Hydrology

The existing athletic field known as Field #2, is approximately 95,000 square feet of land on the Property and comprises nearly the entirety of the Site. Under existing conditions runoff from the Site and Property is collected and conveyed to an existing combined stormwater treatment wetlands and detention facility, previously sized for the Site and the Property. The existing combined stormwater treatment wetlands and detention facility discharges via overflows to a natural wetlands area that is associated with and tributary to the Middle Fork of Quilceda Creek.

4.3.2 On-Site Stormwater Best Management Practices

As required by ECDC 2017 and ESA 2017, the following BMPs were considered for on-Site stormwater management. Where a BMP was determined to be infeasible, discussion of infeasibility criteria is provided.

4.3.2.1 Lawn and Landscaped Areas

4.3.2.1.1. Post-Construction Soil Quality and Depth

This BMP will be applied to all areas of the Site that are disturbed and are proposed to be landscaped after construction. Areas within existing tree root zones will be excluded.

4.3.2.2 Other Hard Surface Areas

4.3.2.2.1. Full Dispersion

This BMP is considered infeasible due to the limited availability of downslope areas and close proximity to property lines.

4.3.2.2.2. Bioretention

This BMP is considered infeasible due to the limited availability of downslope areas without existing trees to be retained and close proximity to existing downslope rockeries, proposed buildings, and property lines.

4.3.2.2.3. Sheet Flow Dispersion

This BMP is considered infeasible due to the limited availability of suitable downslope areas and close proximity to existing downslope rockeries, proposed buildings, and property lines.

4.3.2.2.4. Detention Facilities

This BMP is considered feasible and is provided in the void volume of the field base-rock gravel bed.

4.3.3 Proposed Developed Site Hydrology

Site improvement areas are estimated to comprise approximately 95,000 square feet of land. The proposed improvements will follow jurisdiction requirements. Proposed Site improvements are anticipated to include the following:

- A new concrete field curb, around the perimeter of Field #2;
- Synthetic turf surfacing over the extent of Field #2;
- New drainage facilities, beneath and extending from Field #2 to the existing stormwater pond;

- Athletic field site amenities; and
- Restoration of disturbed areas.

Under proposed conditions, runoff flows from the Site, Field #2, will be attenuated via detention in the void volume of the field's base-rock gravel bed. Limited infiltration from the bottom of the field's base-rock gravel bed will manage a portion of the Site runoff. Runoff from the Site and Property will continue to be collected and conveyed to the aforementioned existing combined stormwater treatment wetlands and detention facility. The stormwater treatment wetlands and detention facility will continue to discharge via overflow to a natural wetlands area that is tributary to the Middle Fork of Quilceda Creek.

Because the Property is already served by a previously-sized stormwater management facility, the predeveloped Site condition is assumed to be the existing impacted condition of the Site. The developed Site condition is assumed to be as depicted on Figure 6. WWHM computer modeling of stormwater runoff for the predeveloped and proposed developed Site conditions was completed to demonstrate compliance with City of Marysville requirements.

Reporting documents generated from WWHM modeling (Appendix C) demonstrate that the proposed stormwater facilities will meet the Category 2 flow control requirements that estimated mitigated runoff flow rates after development are equal to or less than the estimated predeveloped runoff flow rates for the Site.

4.4 WATER QUALITY SYSTEM

Enhanced treatment is required for the Site, and phosphorus control is required for existing natural grass areas on the Property, as summarized in Section 2.0, Determination of Applicable Minimum Requirements. To meet these requirements, the previously-sized existing stormwater treatment wetlands is anticipated to provide adequate water quality treatment.

5.0 CONVEYANCE SYSTEM ANALYSIS AND DESIGN

The stormwater system elements have been sized to convey the estimated peak stormwater flow adequately. Preliminary conveyance capacity calculations for the proposed stormwater management system are provided in Appendix D. Final conveyance capacity calculations for the proposed stormwater management system will be added to Appendix D of the final issuance of this report, after the proposed design has been reviewed and finalized.

6.0 SPECIAL REPORTS AND STUDIES

GeoEngineers, Inc. 2022. *Memorandum – Geotechnical Considerations. Strawberry Fields Athletic Complex – Field #2 Turf Conversion. Marysville, Washington*. Prepared for RWD Landscape Architecture, August 22.

7.0 OTHER PERMITS

The following permits are anticipated to be required for the proposed Site improvements:

- City of Marysville Grading Permit;
- Washington State Department of Labor & Industries Electrical Permit.

Because the Site is greater than 1 acre of land, a Washington State Department of Ecology Construction Stormwater General Permit is anticipated to be required.

Other required permits may be identified as the permit application and review process progresses. These permits will be added to this list with the final issuance of this TIR.

8.0 OPERATION AND MAINTENANCE MANUAL

An operation and maintenance manual is provided in Appendix E.

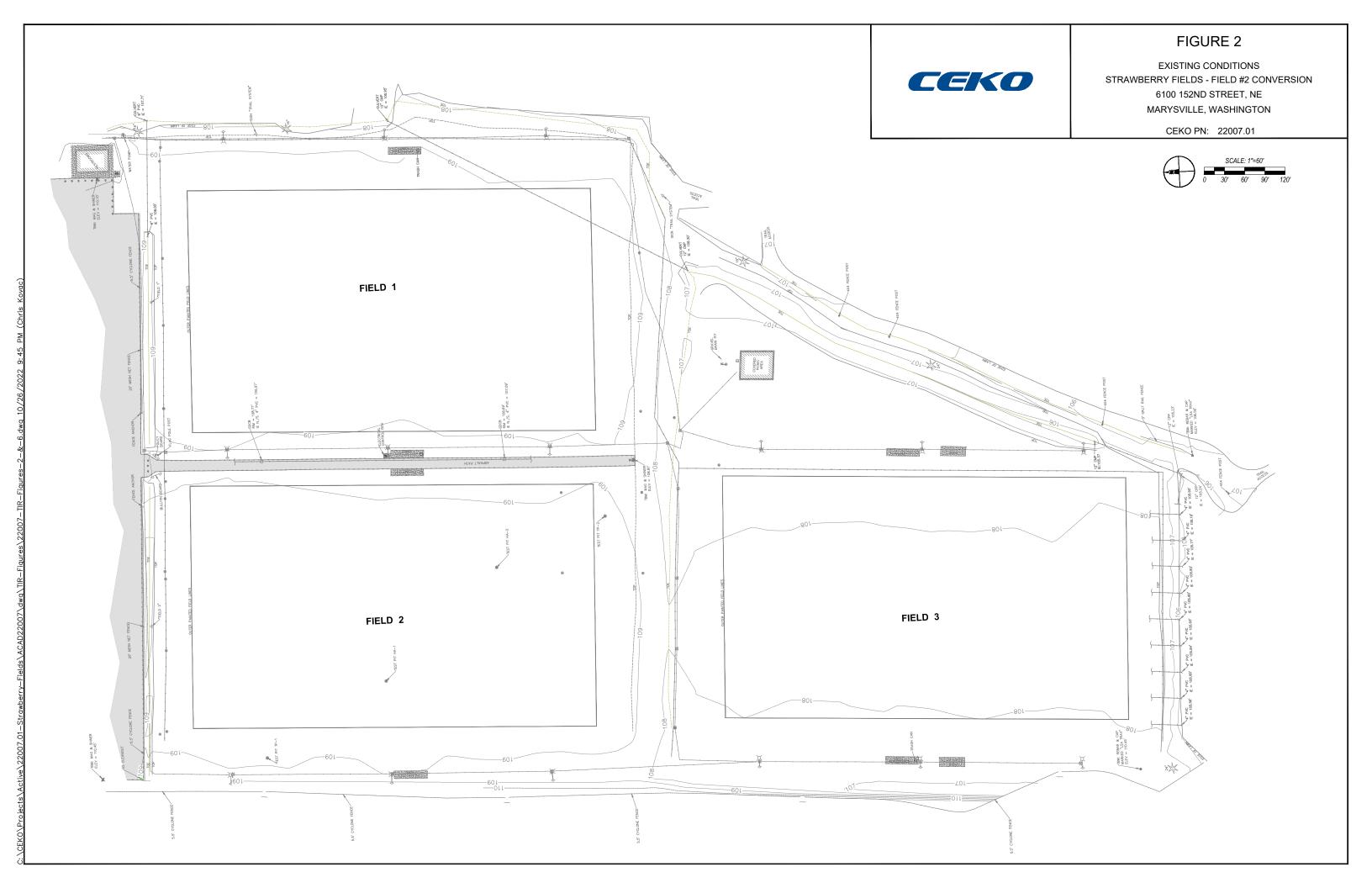
8-1

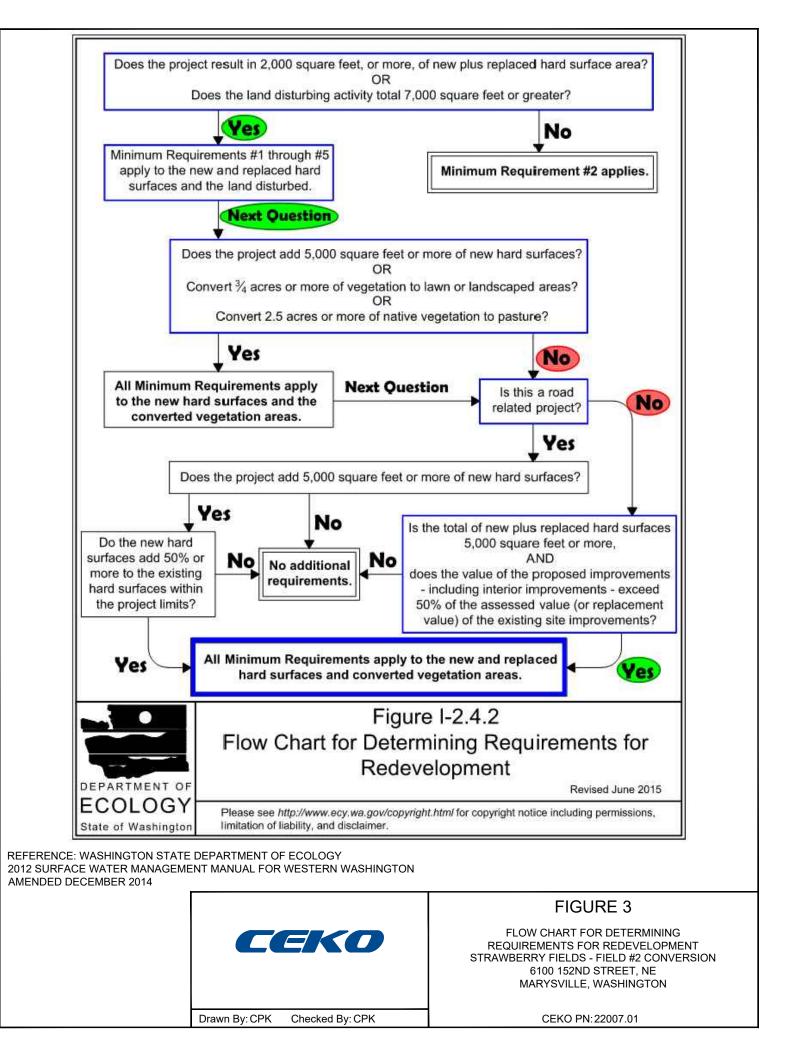
9.0 SECURITY DEVICE

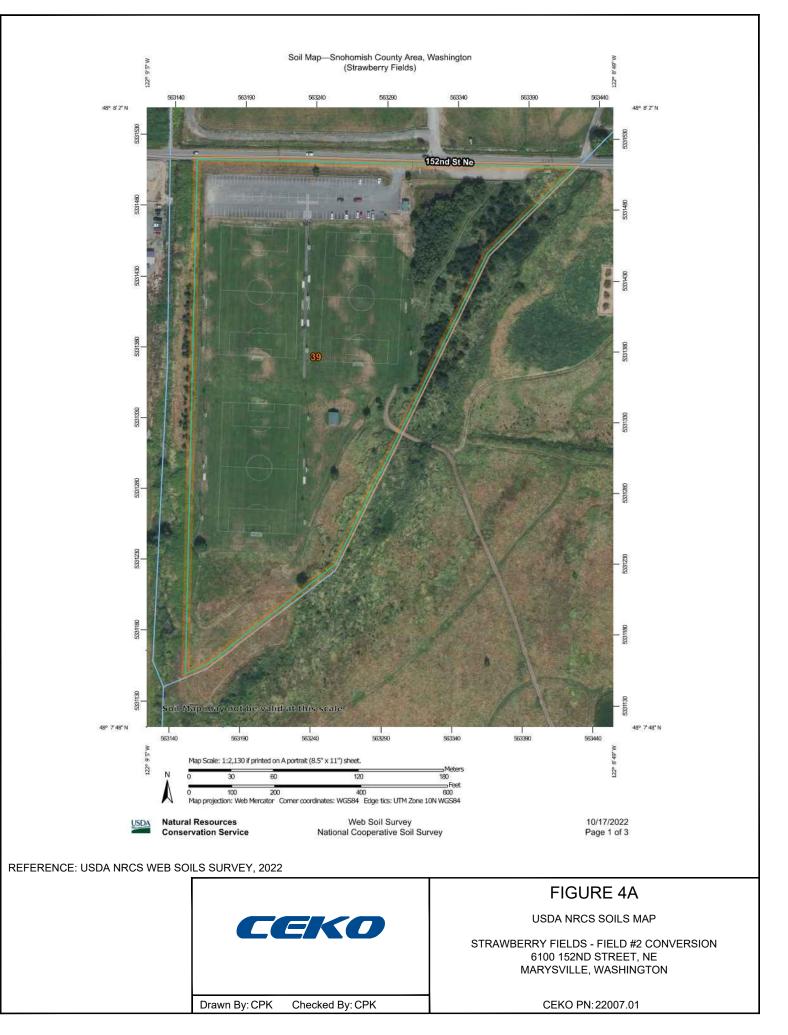
Documentation establishing the appropriate security device(s) and amount(s) will be provided with the final issuance of this TIR.

10.0 REFERENCES

- Washington State Department of Ecology. 2014. 2012 Stormwater Management Manual for Western Washington, as Amended in December 2014. December.
- Federal Emergency Management Agency (FEMA). 2020. Flood Map Service Center. <<u>https://msc.fema.gov/portal/home</u>>. (accessed October 17, 2022).
- GeoEngineers, Inc. 2022. Memorandum Geotechnical Considerations. Strawberry Fields Athletic Complex – Field #2 Turf Conversion. Marysville, Washington. Prepared for RWD Landscape Architecture, August 22.
- U.S. Department of Agriculture Natural Resources Conservation Service. 2022. Web Soil Survey Soil Resource Report Search. <<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>>. (accessed October 17, 2022).
- Snohomish County Assessor. 2020. Snohomish County Online Property Information (SCOPI). < <u>https://scopi.snoco.org/Html5Viewer/Index.html?configBase=https://scopi.snoco.org/Ge</u> <u>ocortex/Essentials/REST/sites/SCOPI/viewers/SCOPI/virtualdirectory/Resources/Config/D</u> <u>efault</u>>. (accessed October 17, 2022).
- City of Marysville. 2022. *Marysville WA Maps Marysville WA Critical Areas* (online GIS map application). <<u>https://marysvillewa.maps.arcgis.com/apps/webappviewer/index.html?id=2ad43986d4</u> <u>204c278b68e2bf2126e1ff</u>>. (accessed October 17. 2022).
- Washington State Department of Natural Resources. 2022. *Forest Practices Application Mapping Tool (FPAMT)*. < <u>https://fpamt.dnr.wa.gov/2d-view</u>>. (accessed October 17, 2022).

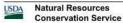



FIGURES


TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

10/17/2022 Page 2 of 3 This product is generated from the USDA-NRCS certified data as Maps from the Web Soil Survey are based on the Web Mercator Date(s) aerial images were photographed: Aug 16, 2020-Aug distance and area. A projection that preserves area, such as the contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Enlargement of maps beyond the scale of mapping can cause projection, which preserves direction and shape but distorts Soil map units are labeled (as space allows) for map scales Natural Resources Conservation Service Albers equal-area conic projection, should be used if more line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at 1:24,000. Snohomish County Area, Washington Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Warning: Soil Map may not be valid at this scale. Version 24, Sep 8, 2022 of the version date(s) listed below. Source of Map: Natu Web Soil Survey URL: Survey Area Data: Soil Survey Area: 1:50,000 or larger. measurements. 19, 2020 scale. Soil Map—Snohomish County Area, Washington (Strawberry Fields) Web Soil Survey National Cooperative Soil Survey Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot **US Routes** Spoil Area Wet Spot Other Rails **Nater Features** Transportation Background MAP LEGEND av 8 Ð \triangleleft 0 ŧ 1 5 Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Miscellaneous Water Soil Map Unit Lines Soil Map Unit Points Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features Rock Outcrop Gravelly Spot Slide or Slip Sandy Spot Saline Spot Borrow Pit Lava Flow Sodic Spot Clay Spot Gravel Pit Area of Interest (AOI) Sinkhole Blowout Landfill Natural Resources Conservation Service Э \otimes ж 0 X •: 0 ~ -1 6¢ 0 0 > + 20 Ŵ 0 AN 2 Soils USDA REFERENCE: USDA NRCS WEB SOILS SURVEY, 2022 **FIGURE 4B** USDA NRCS SOILS MAP LEGEND STRAWBERRY FIELDS - FIELD #2 CONVERSION 6100 152ND STREET, NE MARYSVILLE, WASHINGTON


Drawn By: CPK

Checked By: CPK

CEKO PN: 22007.01

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
39	Norma loam	13.3	100.0%
Totals for Area of Intere	est	13.3	100.0%

Web Soil Survey National Cooperative Soil Survey 10/17/2022 Page 3 of 3

REFERENCE: USDA NRCS WEB SOILS SURVEY, 2022

USDA NRCS SOILS MAP
UNIT LEGEND
STRAWBERRY FIELDS - FIELD #2 CONVERSION
6100 152ND STREET, NE
MARYSVILLE, WASHINGTON

CEKO PN: 22007.01

FIGURE 4C

Snohomish County Area, Washington

39—Norma loam

Map Unit Setting

National map unit symbol: 2hyx Elevation: 0 to 1,000 feet Mean annual precipitation: 35 to 60 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 150 to 200 days Farmland classification: Prime farmland if drained

Map Unit Composition

Norma, undrained, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Norma, Undrained

Setting

Landform: Drainageways, depressions Parent material: Alluvium

Typical profile

H1 - 0 to 10 inches: ashy loam

- H2 10 to 28 inches: sandy loam
- H3 28 to 60 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent

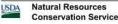
Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water

(Ksat): Moderately high to high (0.57 to 1.98 in/hr)

Depth to water table: About 0 inches


Frequency of flooding: None

Frequency of ponding: Frequent

Available water supply, 0 to 60 inches: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F002XA007WA - Puget Lowlands Wet Forest Forage suitability group: Wet Soils (G002XN102WA) Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Fields/ACAD22007/dwa/TIR-Figures/22007-TIR-Figures.dwg 10/26/2022 9:45 PM (Chris Kovac

cts/Active/22007.01-Strawber

Web Soil Survey National Cooperative Soil Survey 10/17/2022 Page 1 of 2

REFERENCE: USDA NRCS WEB SOILS SURVEY, 2022

USDA NRCS SOILS MAP UNIT DESCRIPTION STRAWBERRY FIELDS - FIELD #2 CONVERSION 6100 152ND STREET, NE MARYSVILLE, WASHINGTON

CEKO PN: 22007.01

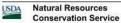
FIGURE 4D

Minor Components

Norma, drained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Seasonally Wet Soils (G002XN202WA) Hydric soil rating: Yes

Terric medisaprists, undrained


Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Bellingham, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Snohomish County Area, Washington Survey Area Data: Version 24, Sep 8, 2022

Web Soil Survey National Cooperative Soil Survey 10/17/2022 Page 2 of 2

REFERENCE: USDA NRCS WEB SOILS SURVEY, 2022

Checked By: CPK

Drawn By: CPK

USDA NRCS SOILS MAP UNIT DESCRIPTION STRAWBERRY FIELDS - FIELD #2 CONVERSION 6100 152ND STREET, NE MARYSVILLE, WASHINGTON

CEKO PN: 22007.01

FIGURE 4E

Drawn By: CPK

Area of Undetermined Flood Hazard zw

Effective LOMRs

Channel, Culvert, or Storm Sewe

Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance

Water Surface Elevation

Coastal Transect

Base Flood Elevation Line (BFE)

Coastal Transect Base

Profile Baseline

Jurisdiction Boundar

Limit of Study

No Digital Data Available

Unmapped

Digital Data Available

Hydrographic Feature

0.2% Annual Chance Flood Hazard, Area depth less than one foot or with drainag areas of less than one square mile zone

annual chance flood

of 1%

Area with Reduced Flood Risk due to Levee. See Notes. Zane X Area with Flood Risk due to Levee Zor

Future Conditions 1% Annual Chance Flood Hazard Zone X

AO, AH, VE, AR

Without Base Flood Elevation (BFE) Zone A, V. A99 With BFE or Depth Zone AE. A0, AH, VE. A

Regulatory Floodway

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

was exported on 10/17/2022 at 5:42 PM and does not effect changes or amendments subsequent to this date The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This may change effective information ome superseded by new data over tin ne. The NFHL and

FIRM panel number, and FIRM effective date. Map images inmapped and unmodernized areas cannot be used for appear: basemap imagery, flood zone This map image is void if the one or more of the follov nd, scale bar, map creation date, cor ments do not regulatory purpo

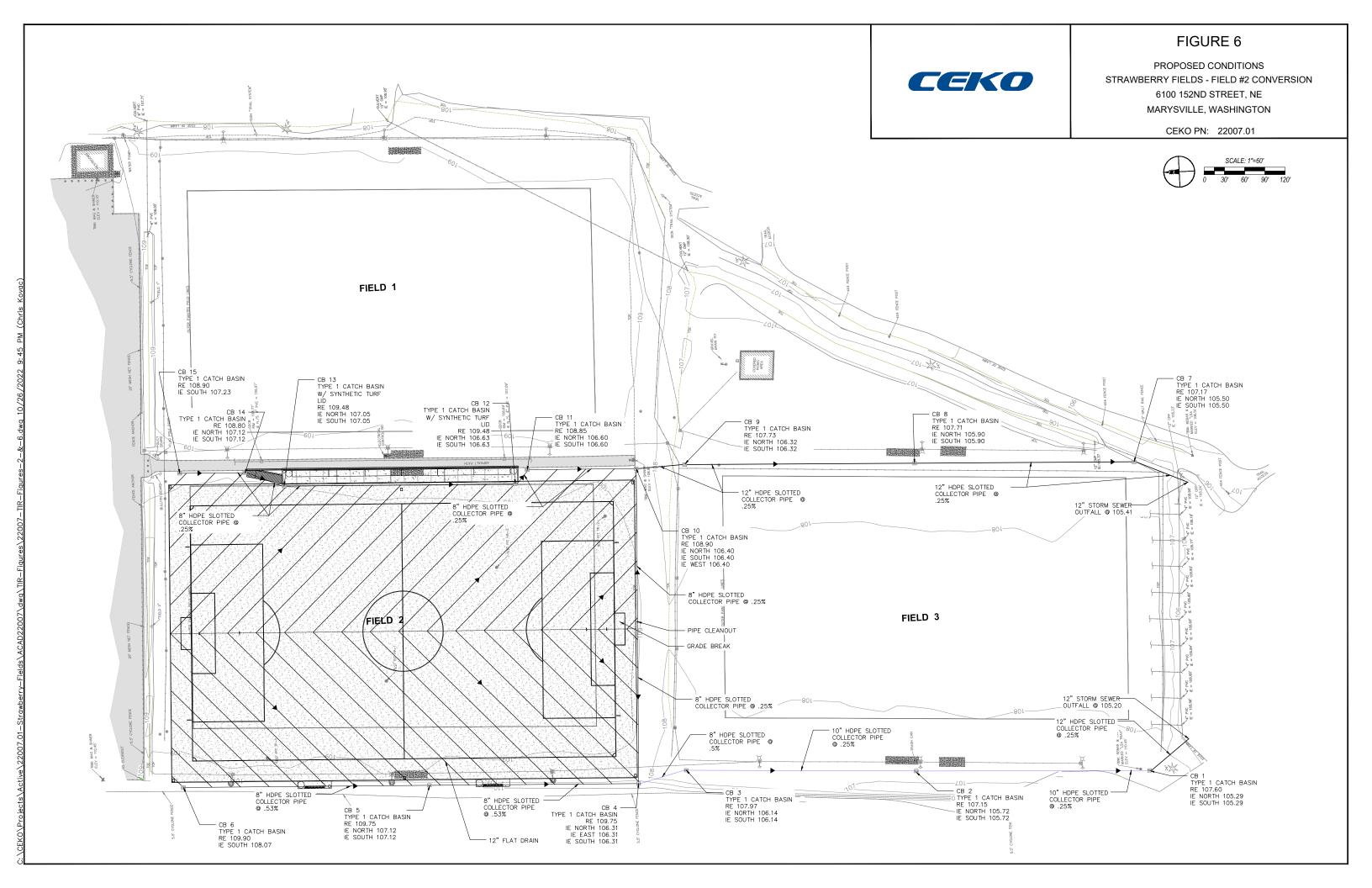
122°8'42"W 48°7'45

2,000 Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

1:6,000

Feet

1,500


1,000

500

250

CEKO PN: 22007.01

Checked By: CPK

APPENDIX A SITE AREAS SUMMARY

TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

repared By:	CPK Date	: 10/18/2022				
repared by.	CFK Date	. 10/18/2022				
		SITE AREAS SUMMA	RY			
_						
eferences:	1 2012 61		A/		1 201 1	204 4 614/0 40 414/0
		nwater Management Manual for Western N	Nashington (Amended i	n Decen	iber 2014)	
	•	Architecture and Civil Plans				CN.NN
	4 western w	ashington Hydrology Model 2012				WWHM2012
otal Site Sub-B	asin Areas					
Т	otal Project Site Area	=	95,000 -SF	or	2.181	-Acres
otal Existing Si	te Sub-Basin Areas (fo	or modeling)				
-	Forest (flat) =		0 -SF	or	0.000	-Acres
C	Forest (mod) =		0 -SF	or		-Acres
C	Forest (steep) =		0 -SF	or	0.000	-Acres
C	Pasture (flat) =		0 -SF	or	0.000	-Acres
C	Pasture (mod) =		0 -SF	or	0.000	-Acres
C	Pasture (steep) =		0 -SF	or	0.000	-Acres
C	Lawn (flat) =		95,000 -SF	or		-Acres
C	Lawn (mod) =		0 -SF	or	0.000	-Acres
	Lawn (steep) =		0 -SF	or		-Acres
R	loads (flat) =		0 -SF	or	0.000	-Acres
R	loads (mod) =		0 -SF	or	0.000	-Acres
	loads (steep) =		0 -SF	or		-Acres
R	Roof Tops (flat) =		0 -SF	or	0.000	-Acres
) Driveways (flat) =		0 -SF	or		-Acres
	Priveways (mod) =		0 -SF	or		-Acres
	Priveways (steep) =		0 -SF	or		-Acres
	idewalks (flat) =		0 -SF	or		-Acres
	idewalks (mod) =		0 -SF	or		-Acres
	idewalks (steep) =		0 -SF	or		-Acres
	Parking (flat) =		0 -SF	or		-Acres
	Parking (mod) =		0 -SF	or		-Acres
	Parking (steep) =		0 -SF	or		-Acres
	ond =		0 -SF	or		-Acres
	orous Pavement =		0 -SF	or		-Acres
	ite Total		95,000 -SF	or		-Acres
5	check			51	2.181 OK	
т	otal Site Impervious A	rea (for modeling) =	0 -SF	or	-	-Acres
	ite Percent Imperviou		0-3F 0.0%	01	0.000	ACICS

Prepared By: CPK Date: 10/18/2022				
SITE AREAS SUMM	ARY			
eferences:			1 2011	
1 2012 Stormwater Management Manual for Western	Washington (Amended i	n Decen	iber 2014)	
2 Landscape Architecture and Civil Plans				CN.NN
4 Western Washington Hydrology Model 2012				WWHM2012
otal Proposed Developed Site Sub-Basin Areas (for modeling)				
C Forest (flat) =	0 -SF	or	0.000	-Acres
C Forest (mod) =	0 -SF	or	0.000	-Acres
C Forest (steep) =	0 -SF	or	0.000	-Acres
C Pasture (flat) =	0 -SF	or	0.000	-Acres
C Pasture (mod) =	0 -SF	or	0.000	-Acres
C Pasture (steep) =	0 -SF	or	0.000	-Acres
C Lawn (flat) =	56,913 -SF	or		-Acres
C Lawn (mod) =	0 -SF	or	0.000	-Acres
C Lawn (steep) =	0 -SF	or	0.000	-Acres
Roads (flat) =	0 -SF	or	0.000	-Acres
Roads (mod) =	0 -SF	or	0.000	-Acres
Roads (steep) =	0 -SF	or	0.000	-Acres
Roof Tops (flat) =	0 -SF	or		-Acres
Driveways (flat) =	0 -SF	or	0.000	-Acres
Driveways (mod) =	0 -SF	or	0.000	-Acres
Driveways (steep) =	0 -SF	or	0.000	-Acres
Sidewalks (flat) =	38,088 -SF	or	0.874	-Acres
Sidewalks (mod) =	0 -SF	or		-Acres
Sidewalks (steep) =	0 -SF	or	0.000	-Acres
Parking (flat) =	0 -SF	or		-Acres
Parking (mod) =	0 -SF	or		-Acres
Parking (steep) =	0 -SF	or		-Acres
Pond =	0 -SF	or		-Acres
Porous Pavement =	0 -SF	or		-Acres
Site Total	95,000 -SF	or		-Acres
check	,		0К	
Total Site Impervious Area (for modeling) =	<i>38,088</i> -SF	or		-Acres
Site Percent Impervious (for modeling) =	40.1%	0.	0.07	

APPENDIX B MEMORANDUM - GEOTECHNICAL CONSIDERATIONS

TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

Memorandum

554 West Bakerview Road, Bellingham, Washington 98226, Telephone: 360.647.1510, Fax: 360.647.5044

www.geoengineers.com

To:	Robert W. Droll, PLA, ASLA (RWD Landscape Architecture)
From:	\mathcal{AF} Amanda Fickeisen, LG, Sean W. Cool, PE \mathcal{SWC}
Date:	August 22, 2022
File:	0925-019-00
Subject:	Memorandum - Geotechnical Considerations Strawberry Fields Athletic Complex - Field #2 Turf Conversion Marysville, Washington

INTRODUCTION

This memorandum presents a summary of GeoEngineers, Inc.'s (GeoEngineers) geotechnical considerations to support replacement of the existing sod field surfacing with a new synthetic turf surface for Field #2 of the City of Marysville Strawberry Fields Athletic Complex in Marysville, Washington. The project location is shown on the Figure 1, Vicinity Map. We understand that the field complex has an existing drain system with 2-inch-diameter pipes at 15 inches on-center and is not functioning properly; this system will be left in place. The new construction will include stripping existing sod, placing a flat geocomposite underdrain over the subgrade, placement of 6 inches of granular field fill within a containment curb surrounding the field, and new synthetic turf. The underdrain will slope to an 8-inch corrugated pipe and outlet to the existing detention basin to the south of the site.

The purpose of our geotechnical engineering services was to explore subsurface conditions at the site as a basis for evaluating the existing shallow soil profile and groundwater conditions in Field #2. Our scope of work is described in our services agreement dated April 18, 2022 and authorized via notice to proceed on July 11, 2022. The scope of our services completed for the project included completing two test pits and two hand augers, completing limited lab testing, discussing site observations and recommendations on the suitability of the proposed turf section and preparing this geotechnical considerations memorandum.

SITE CONDITIONS

Surface Conditions

The project site is located at Strawberry Fields Athletic Complex in Marysville, Washington. The site is bounded by 152nd Street NE to the north, Pearson Drilling to the west and the Strawberry Fields Trail System to the south and east. The field complex is located nearby a residential neighborhood. The fields are relatively level and vegetated with manicured lawn/sod. An access way with bleachers and lights are located in between Field #2 and the field to the east.

Subsurface Conditions

Soil Conditions

Subsurface soil conditions were evaluated by completing two hand augers (HA-1 and HA-2) to depths of 5.5 and 5.3 feet below the existing ground surface (bgs), respectively. Two test pits (TP-1 and TP-2) were also completed to depths of 6 feet bgs on August 3, 2022 using a mini excavator. All explorations were completed at the approximate locations shown on the Figure 2, Site Plan attached to this memo. The explorations were

Memorandum to RWD Landscape Architecture August 22, 2022 Page 2

continuously monitored by a geotechnical engineer from our firm who examined and classified the soil encountered, obtained representative soil samples and maintained a detailed log of the explorations. Soil encountered during the explorations were classified in general accordance with ASTM International (ASTM) D 2488 and the classification chart listed on Figure 3, Key to Exploration Logs. The logs of the explorations are presented on Figures 4 through 7, Logs of Explorations. The results of laboratory sieve analyses from four representative soil samples collected within the depth of exploration are presented on Figure A-8, Sieve Analysis Results.

In general, subsurface soil conditions in both the test pits and hand augers consisted of 1 to 3 inches of sod overlying a loose brown medium to coarse sandy fill to a depth of approximately 1-foot bgs. A subsequent layer of fill consisting of medium dense gray-brown to gray-blue poorly graded fine to medium sand with silt to silty sand was found to depths ranging from approximately 1.5 to 3 feet bgs. Underlying the fill, an organic rich layer consisting of dark brown sandy silt to silt with sand was encountered, interpreted to be a relict topsoil layer. The relict topsoil ranged from 6 to 12 inches in thickness. Soil interpreted to be native Vashon Drift glacial recessional outwash was encountered underlying the relict topsoil to the full depth explored, ranging from 5.3 to 6 feet.

Groundwater Conditions

Groundwater seepage was encountered ranging from 5 to 6 feet in all explorations at the time of our site exploration in early August. Groundwater is often perched within sand and gravel fill layers overlying layers of finegrained (silt and clay) fill and native undifferentiated glacial soils. We do not anticipate turf conversion will encounter significant perched groundwater if the work is done during the dry season, but perched groundwater could occur at and above the fill and native soil contact during the wet season. Groundwater conditions should be expected to fluctuate based on season, precipitation and other factors.

GEOTECHNICAL CONSIDERATIONS

Based on our site observations, it is our opinion that the site conditions are suitable for the proposed improvements with proper planning and construction practices. We provide the following general geotechnical considerations.

Site Preparation and Earthwork

In general, site preparation will include stripping the sod from the existing Field #2 area, placing a flat underdrain on the subgrade and placing 6 inches of new granular field fill material within a 6-inch containment curb surrounding the field. We recommend evaluation of the field subgrade after stripping to identify excessively soft/loose areas that may require overexcavation and replacement prior to placement of the turf section.

The existing granular fill will provide some protection to the subgrade during dry weather, but the underlying relict topsoil layer and other fine-grained soils may be subject to degradation from repeated heavy traffic even during dry weather. Accordingly, we recommend that site preparation and other earthwork be completed with low ground pressure track-mounted equipment to protect the subgrade from disturbance, or other considerations for vehicle/equipment routing if/where heavy wheeled vehicles will be used.

Memorandum to RWD Landscape Architecture August 22, 2022 Page 3

On-Site Soils

Near-surface on-site soil consist of fine to medium sand with variable silt content and density. Portions of the on-site soils, specifically the upper granular fill layers and native outwash sand with lower fines content (SP and SP-SM) may be suitable for use as general structural fill for site grading but may not meet specific gradation requirements for use within the turf section or drainage. If used, the soil should be free of excessive silt/clay, organic matter, oversized material and moisture conditioned as necessary for compaction. Because of the variable silt content, this material will likely be unsuitable as fill material if the soil is too wet to achieve satisfactory compaction, and moisture-conditioning by drying back the material may be required. If the material cannot be properly moisture conditioned, we recommend using imported material for fill.

A relict topsoil layer was observed between depths of approximately 1.5 to 3.5 feet bgs and extending up to 4 feet bgs. Any organic rich fill soils and relict topsoil layer will not be suitable for reuse and will require separation/segregation from other primarily granular soils if they are to be used for site grading.

Stormwater Drainage Considerations

Relatively shallow groundwater was encountered below the site as shallow as 5 feet bgs in early August, and groundwater elevations would be expected to be higher during the winter and spring. Additionally, the relict topsoil layer and other finer-grained soil deposits likely limit rates of vertical infiltration below the site. As noted, the existing drainage system consisting of buried piping is no longer functioning but will be left in place. Accordingly, new drainage provisions should be provided to maintain field function during the wet season. We understand that stormwater drainage will be managed using an underdrain system sloping towards an 8-inch slotted corrugated pipe. The corrugated pipe will drain to the detention basin located south of the site.

Wet Weather Earthwork

The upper soils at the site and the granular field fill material to be used are moderately susceptible to disturbance from construction traffic when excessively wet. The underlying relict topsoil layer is highly susceptible to disturbance even during moderately wet weather. If feasible, we recommend that the field improvements be constructed during the drier summer months to reduce extra costs and delays associated with wet weather earthwork.

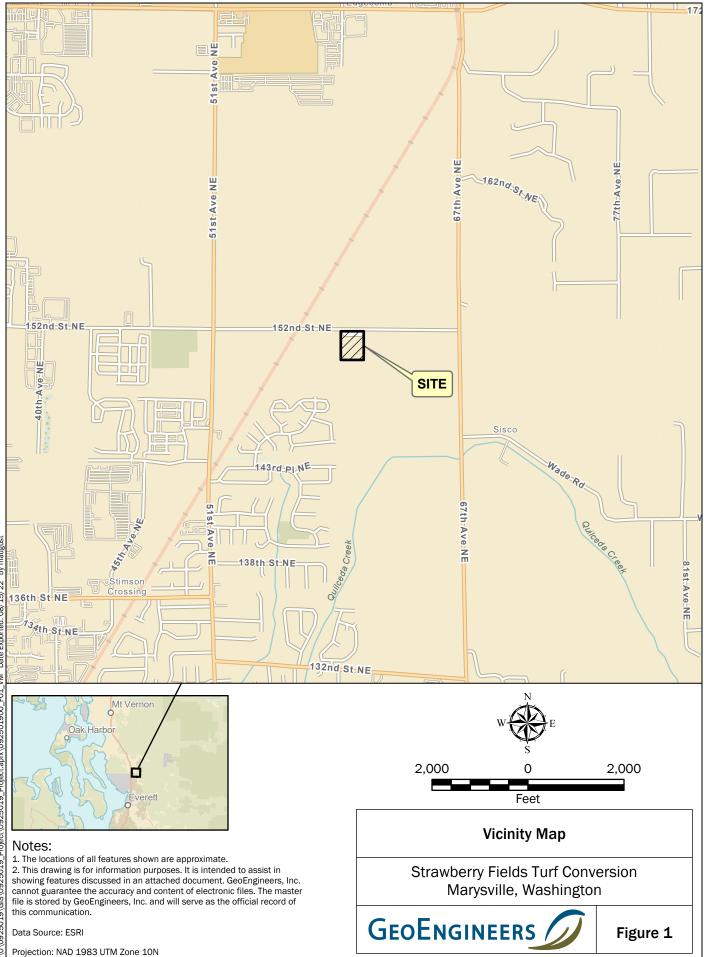
If earthwork will occur during wet weather conditions and construction schedule cannot be adjusted, it may be necessary to use light-weight track-mounted equipment, load removed material into trucks supported on gravel haul roads, use gravel working pads and employ other methods to reduce ground disturbance. The contractor should be responsible to protect the subgrade during construction reflective of their proposed means and methods, and anticipated time of year for construction.

LIMITATIONS

We have prepared this limited design memorandum for the RWD Landscape Architecture, for the City of Marysville Strawberry Athletic Fields Turf Conversion project. RWD Landscape Architecture may distribute copies of this report to its authorized agents and regulatory agencies as may be required for the Project.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices for geotechnical engineering in this area at the time this report was prepared. The

conclusions, recommendations, and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty, express or implied, applies to the services or this report.


Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

PU:AF2:SWC:tlm

Attachments: Figure 1. Vicinity Map Figure 2. Site Plan Figure 3. Key to Exploration Logs Figures 4 through 7. Logs of Explorations Figure 8. Sieve Analysis Results

One copy submitted electronically

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

?\0\0925019\GIS\0925019_Project\0925019_Project.aprx\092501900_F01_VM Date Exported: 08/15/22 by maugust

Notes:

 The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Bing Maps.

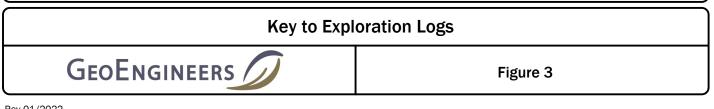
Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

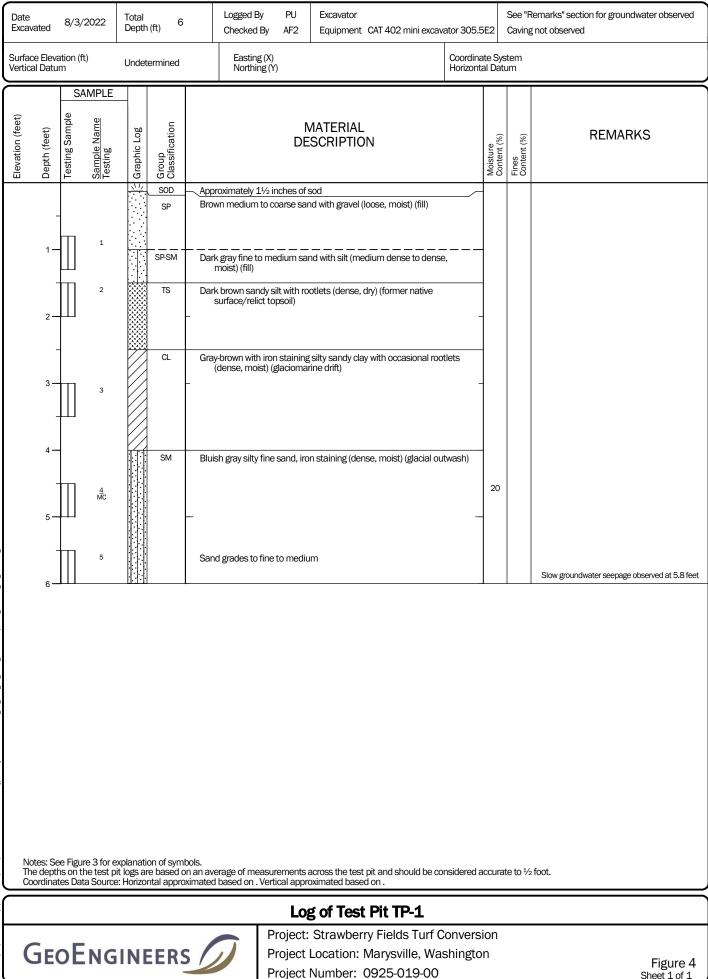
Strawberry Fields Turf Conversion Marysville, Washington

GEOENGINEERS /

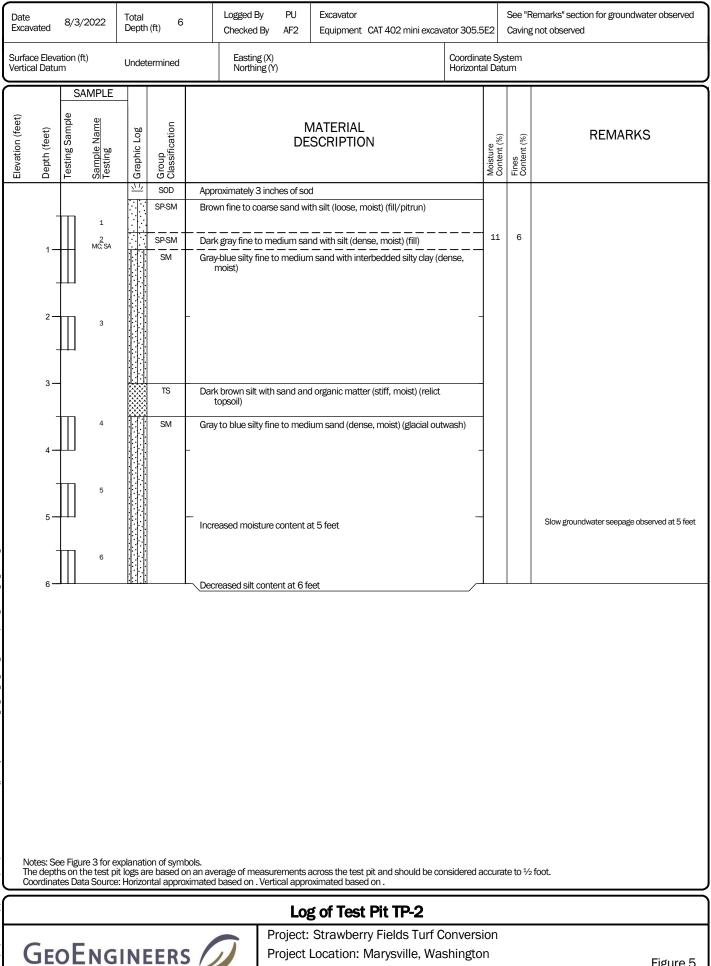
Figure 2

MAJOR DIVISIONS SYMBOLS TYPICAL			SYM	BOLS	TYPICAL	
			GRAPH	LETTER	DESCRIPTIONS	G
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SOILS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
ORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS	<u>/</u> /
RETAINED ON IO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
ORE THAN 50% PASSING IO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
I	HIGHLY ORGANIC	SOILS	h	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	%F
bl Se	□ 2.4- ○ Star □ She □ Pist □ Dire □ Bull □ Con owcount is re conserver ows required conserver	ect-Push < or grab tinuous Coring ecorded for dri to advance sa n log for hamn	oarrel / D tion Test (g ven samp ampler 12 ner weigh	ames & (SPT) elers as t inches t and dro	Moore (D&M) he number of (or distance noted).	AL CA CPS DDS HA MO MO PI PP SA TX UU VS
	VOH" indicate ammer.	es sampler pus	shed usin	g the we	ight of the	NS SS MS
						HS


TIONAL MATERIAL SYMBOLS


SYMBOLS		TYPICAL		
GRAPH LETTER		DESCRIPTIONS		
	AC	Asphalt Concrete		
	сс	Cement Concrete		
	CR	Crushed Rock/ Quarry Spalls		
	SOD	Sod/Forest Duff		
TS		Topsoil		

Groundwater Contact Measured groundwater level in exploration, well, or piezometer Measured free product in well or piezometer **Graphic Log Contact** Distinct contact between soil strata Approximate contact between soil strata **Material Description Contact** Contact between geologic units Contact between soil of the same geologic unit Laboratory / Field Tests rcent fines rcent gravel terberg limits emical analysis boratory compaction test nsolidation test y density rect shear drometer analysis pisture content pisture content and dry density ohs hardness scale ganic content rmeability or hydraulic conductivity asticity index oint lead test cket penetrometer eve analysis axial compression confined compression consolidated undrained triaxial compression ne shear **Sheen Classification** Visible Sheen ght Sheen oderate Sheen


eavy Sheen

understanding of subsurface conditions. vere made; they are not warranted to be

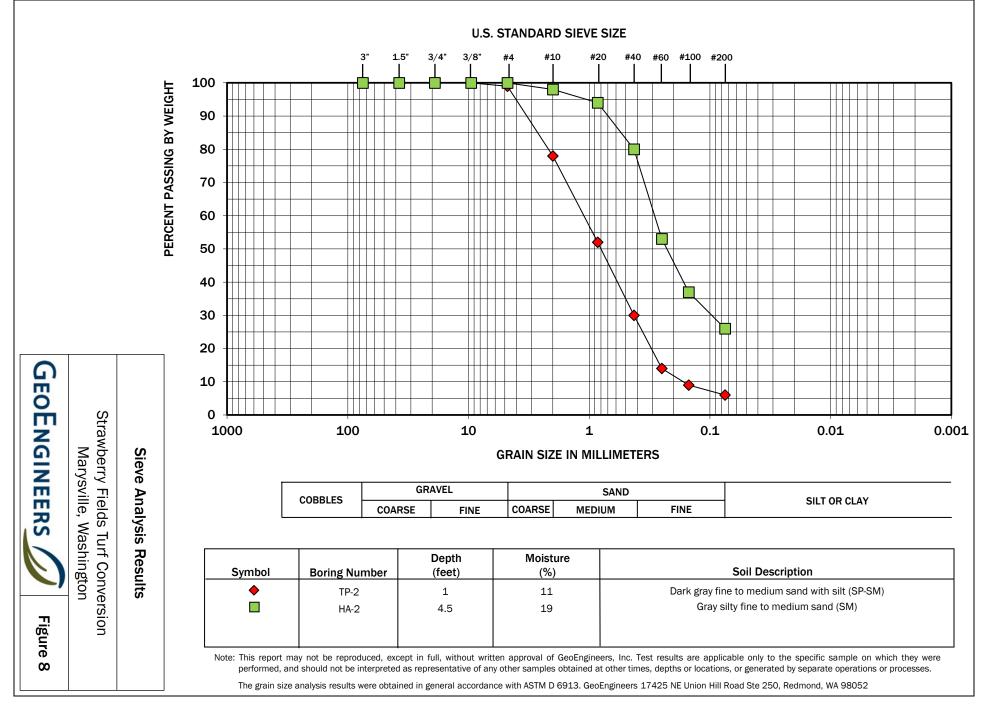
Sheet 1 of 1

Project Number: 0925-019-00

Figure 5 Sheet 1 of 1

Date Excav		8/3,	/2022	Total Depth	, (ft) 5.5	Logged Checked	-	Excavator Equipment St	novel/hand auger				Remarks" section for groundwater observed g not observed
Surface Elevation (ft) Undetermined Easting (X) Vertical Datum Northing (Y)					Coordinate System Horizontal Datum								
		S	AMPLE										
Elevation (feet)	Depth (feet)	Testing Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification			MATERIAL ESCRIPTION			Moisture Content (%)	Fines Content (%)	REMARKS
	- 1—		1 MC		<u>SOD</u> SP	<u></u>	Approximately 1½ inches of sod Brown fine to medium sand with occasional gravel (loose, moist) (fill)				13		
	-		2		SP-SM	Grayish brown (dense, mo	fine to medi bist0 (fill)	um sand with silt ar	nd occasional fine ;	gravel	-		
	-		3		SM ML/TS	-	ine sand (medium dense, moist) (fill) sandy silt with organic matter (stiff, moist) (relict topsoil)			-			
	3—		4		ML	- Bluish gray cla	yey sandy sil	t (stiff, moist) (rewo	rked glaciomarine	- e drift)	-		
	4 —		6		SP-SM	Gray to brown moist) (gla	fine to mediu cial outwash	um sand with silt (m)	edium dense to d	lense,	-		
	5 —		7			Brown silty fine	e to medium		ense, wet)		_		Slow groundwater observed at 5.3 feet
Notes: See Figure 3 for explanation of symbols. The depths on the hand-augered boring logs are based on an average of measurements across the hand-auger and should be considered accurate to ½ foot.													
							Log	of Hand Au	iger HA-1				
C	GEO	эE	NG	INE	EERS	0	Projec	t: Strawberry t Location: Ma t Number: 09	arysville, Wa				Figure 6 Sheet 1 of 1

Date:8/16/22 Path:P:\0\0925019\GINT\092501900.GPJ DBLibrary/Library.GEDENGINEERS_DF_STD_US_UNK_2017.GLB/GEI8_TESTPIT_1P_GEOTEC_%F


Date 8/3/2022 Total Depth (ft) 5.25			(ft) 5.2		Logged By PU Excavator Checked By AF2 Equipment Shovel/hand auger		See "Remarks" section for groundwater observed Caving not observed		
Surface Elevation (ft) Undetermined Vertical Datum		Easting (X) Northing (Y)	Coordi Horizo	Coordinate System Horizontal Datum					
Testing Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Moisture Content (%)	Fines Content (%)	REMARKS	
	1		SP-SM						
	3 <u>4</u>		ML TS	(medium dense, moist)	_	39	57		
	MC; %F		SM	Light bluish gray silty fine to medium sand (den: outwash) —	e, moist) (glacial	19	26	Slow groundwater seepage observed at 5 fe	
	ation (f m	ation (ft) SAMPLE SAMPLE I I I I I I I SAMPLE add add add add add add add ad	Contraction (fft) m Undet SAMPLE Contraction (fgt) Lestinue Contraction Con	Depth (it) ation (ft) Undetermined SAMPLE Image: Constraint of the second seco	Deput (II) Checked By AP2 Equipment Sho ation (ft) Undetermined Easting (X) Northing (Y) SAMPLE MATERIAL DESCRIPTION ation (ft) ation (ft) Approximately 2 inches of sod Brown fine to medium sand with silt and gravel (ft) SPSM Dark gray fine to medium sand with silt and occa (loose to medium dense, moist) ation (ft) ML Dark gray to dark brown sandy silt with occasion (medium dense, moist) ation (ft) ation (ft) ation (ft) ation (ft) ation (ft) ation (ft) ation (ft) ft Dark gray to dark brown sandy silt with occasion (medium dense, moist) ation (ft) ft SM Light bluish gray silty fine to medium sand (dens outwash)	Deputition Checked By AP2 Equipment Shove/hand auger ation (ft) Undetermined Easting (X) Northing (Y) Coordinates SAMPLE Big Big Big Coordinates Description ation (ft) Big Big Big Big Big Coordinates ation (ft) Big Big Big Big Big Big Big ation (ft) Big Big Big Big Big Big Big ation (ft) Big Big Big Big Big Big Big ation (ft) Big Big Big Big Big Big Big ation (ft) Soo Approximately 2 inches of sod Big Big Big Big ation (ft) SPSM Dark gray fine to medium sand with silt and occasional fine gravel Big Big Big ation (loose to medium dense, moist) Big Big Big Big Big ation (loose to medium dense, moist) Big Big Big Big Big	Deput (II) Checked By Ar2 Equipment Shovel/hand auger ation (ft) Undetermined Easting (X) Coordinate Systemization (Y) SAMPLE Image: Some state	Deput (it) Checked By AF2 Equipment Shovel/hand auger Claving ation (ft) Undetermined Easting (X) Coordinate System SAMPLE Northing (Y) Coordinate System ation (ft) 00 50 Approximately 2 inches of sod 00 ation (ft) 00 00 60 00	

Log of Hand Auger HA-2

Project: Strawberry Fields Turf Conversion Project Location: Marysville, Washington Project Number: 0925-019-00

GEOENGINEERS

Figure 7 Sheet 1 of 1

APPENDIX C STORMWATER MANAGEMENT SYSTEM MODELING REPORT

TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

<section-header>

General Model Information

Project Name:	Strawberry-Fields-001
Site Name:	Strawberry Fields
Site Address:	6100 152nd Street NE
City:	Marysville
Report Date:	10/19/2022
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.200
Version Date:	2021/05/25
Version:	4.2.16

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Field #2 - Existing Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 2.181
Pervious Total	2.181
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.181
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Field #2 - Converted Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 1.307
Pervious Total	1.307
Impervious Land Use SIDEWALKS FLAT	acre 0.874
Impervious Total	0.874
Basin Total	2.181

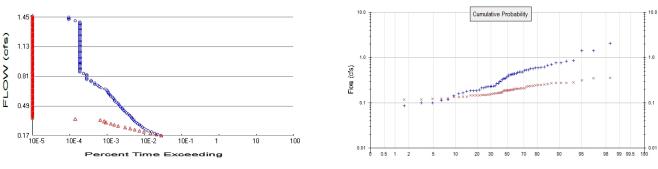
Element Flows To: Surface Interflow Field Base-Rock Gravel Bed

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Field Base-Rock Gravel Bed


Bottom Length:			276.00 ft.
Bottom Width:			276.00 ft.
Trench bottom slope			0 To 1
Trench Left side slope			0 To 1
Trench right side slope	e 2:		0 To 1
Material thickness of f	irst layer:		0.5
Pour Space of materia			0.33
Material thickness of s			0
Pour Space of materia		ver:	0
Material thickness of t		•	0
Pour Space of materia		:	Ō
Infiltration On		-	-
Infiltration rate:			0.05
Infiltration safety facto	r:		0.5
Total Volume Infiltrate			65.824
Total Volume Through			106.969
Total Volume Through			172.794
Percent Infiltrated:			38.09
Total Precip Applied to	o Epcility:		0
			0
Total Evap From Facil	iity.		0
Discharge Structure	054		
Riser Height:	0.5 ft.		
Riser Diameter:	18 in.		0.0
Orifice 1 Diameter:	5.5 IN.	Elevatior	n:0 ft.
Element Flows To:			
Outlet 1	Outlet 2		

Gravel Trench Bed Hydraulic Table

Stage(feet) Area(ac.) Volume(ac-ft.) Discharge(cfs) 0.0000 1.748 0.000 0.000	
	0.000
0.00651.7480.0030.0660.01301.7480.0070.093	0.044 0.044
	0.044
0.0259 1.748 0.015 0.132	0.044
0.0324 1.748 0.018 0.147	0.044
0.0389 1.748 0.022 0.161	0.044
0.0453 1.748 0.026 0.174	0.044
0.0518 1.748 0.029 0.186	0.044
0.0583 1.748 0.033 0.198	0.044
0.0648 1.748 0.037 0.208	0.044
0.0713 1.748 0.041 0.219	0.044
0.0777 1.748 0.044 0.228	0.044
0.0842 1.748 0.048 0.238	0.044
0.0907 1.748 0.052 0.247	0.044
0.0972 1.748 0.056 0.255	0.044
0.1036 1.748 0.059 0.264	0.044
0.1101 1.748 0.063 0.272	0.044
0.1166 1.748 0.067 0.280	0.044
0.1231 1.748 0.071 0.288	0.044
0.1296 1.748 0.074 0.295	0.044
0.1360 1.748 0.078 0.302	0.044
0.1425 1.748 0.082 0.309	0.044

0.5247	1.748	0.333	0.656	0.044
0.5312	1.748	0.344	0.685	0.044
0.5377	1.748	0.355	0.718	0.044
0.5441	1.748	0.367	0.753	0.044
0.5506	1.748	0.378	0.790	0.044
0.5571	1.748	0.389	0.829	0.044
0.5636	1.748	0.401	0.871	0.044
0.5700	1.748	0.412	0.914	0.044
0.5765	1.748	0.423	0.959	0.044

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	2.181
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 1.307 Total Impervious Area: 0.874

Flow Frequency Method: Log Pearson Type III 17B

 Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.341387

 5 year
 0.617697

 10 year
 0.842152

 25 year
 1.172043

 50 year
 1.451033

 100 year
 1.758291

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.184461
5 year	0.235331
10 year	0.268729
25 year	0.310864
50 year	0.342317
100 year	0.373896

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Preaevelopea	wiitigate
1949	0.532	0.167
1950	0.613	0.242
1951	0.225	0.188
1952	0.344	0.184
1953	0.436	0.198
1954	0.840	0.230
1955	0.572	0.275
1956	0.193	0.123
1957	0.522	0.193
1958	1.410	0.358

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 2 0828 0 3575

1	2.0828	0.3575
2	1.4169	0.3506
3	1.4095	0.3104

Duration Flows

The Facility PASSED

Flow(cfs) 0.1707 0.1836 0.1966 0.2095 0.2224 0.2354 0.2483 0.2612 0.2742 0.2871 0.3000 0.3130 0.3259 0.3388 0.3518 0.3647 0.3776 0.3905 0.4035 0.4035 0.4035 0.4164 0.4293 0.4423 0.4552 0.4681 0.4811 0.4940 0.5069 0.5199 0.5328 0.5457 0.5716 0.5845 0.5975 0.6104 0.6233 0.6363 0.6492 0.6621 0.6751 0.6880 0.7009 0.7139 0.7268 0.7397 0.7527 0.7656 0.7785 0.7915 0.8044	Predev 597 489 402 330 270 236 212 188 174 159 143 129 119 110 102 98 92 85 79 71 65 60 56 53 49 46 44 42 38 34 34 32 30 27 26 24 23 22 21 19 15 13 12 10 10 8 8 6 6 6	Mit 602 450 313 207 157 118 89 65 42 33 27 20 18 14 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percentage 100 92 77 62 58 50 41 34 24 20 18 15 15 15 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
0.7656	8	0	0	Pass
0.7785	6	0	0	Pass

0.8561 0.8691 0.8820 0.9337 0.9079 0.9208 0.9337 0.9467 0.9596 0.9725 0.9855 0.9855 0.9984 1.0113 1.0243 1.0243 1.0501 1.0631 1.0631 1.0760 1.0889 1.1018 1.1148 1.1277 1.1406 1.1536 1.1794 1.2053 1.2182 1.2312 1.2341 1.3346 1.3476 1.3605	444444444444444444444444444444444444444			Pass Pass Pass Pass Pass Pass Pass Pass
1.3088 1.3217	4 4	0 0	0 0	Pass Pass
1.3476	4	0	0	Pass
1.3734 1.3864	4 4 4	0 0	0 0	Pass Pass
1.3993 1.4122	4 3	0 0	0 0	Pass Pass
1.4252	4 3 2 2 2	0	0	Pass
1.4381 1.4510	2 2	0 0	0 0	Pass Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.O cfs.0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Field Base-Rock Gravel Bed		157.24				38.09			
Total Volume Infiltrated		157.24	0.00	0.00		38.09	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed
									Passed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Field #2 Existing 2.18ac	-	

Mitigated Schematic

Field #2 Converte 2.18ac	- ed	
S		
Field Base-Ro Gravel E	ock Bed	

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 Strawberry-Fields-001.wdm WDM MESSU 25 PreStrawberry-Fields-001.MES 27 PreStrawberry-Fields-001.L61 28 PreStrawberry-Fields-001.L62 POCStrawberry-Fields-0011.dat 30 END FILES OPN SEOUENCE INGRP 16 INDELT 00:15 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Field #2 - Existing MAX 1 2 30 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1)1 1 1 501 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 1 1 27 0 16 C, Lawn, Flat END GEN-INFO *** Section PWATER*** ACTIVITY

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

 16
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 16
 0
 0
 0
 0
 0
 1
 9

 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 16
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2

 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 16
 0
 4.5
 0.03
 400
 0.05
 0.5
 0.996

 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILDDEEPFR1600220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * *
 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 16
 0.1
 0.25
 0.25
 6
 0.5
 0.25
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 L6
 0
 0
 0
 0
 2.5
 1
 GWVS 16 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Field #2 - Existing*** 2.181 COPY 501 12 2.181 COPY 501 13 PERLND 16 PERLND 16 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 1.2 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 1.2 IMPLND 1 999 EXTNL PREC <Name> # # ***

END IMPLND

WDM 1 EVAP	ENGL	0.76	perlnd 1	999 EXTNL	PETINP
WDM 1 EVAP	ENGL	0.76	IMPLND 1	999 EXTNL	PETINP
END EXT SOURCES					
EXT TARGETS					
<-Volume-> <-Grp>	<-Member->	<mult>Tran</mult>	<-Volume->	<member> T</member>	sys Tgap Amd ***
<name> #</name>		5			tem strg strg***
COPY 501 OUTPUT	MEAN 11	48.4	WDM 501	FLOW E	NGL REPL
END EXT TARGETS					
MASS-LINK					
<volume> <-Grp></volume>			<target></target>	<-Grp>	<-Member->***
<name></name>		<-factor->	<name></name>		<name> # #***</name>
MASS-LINK PERLND PWATER	12 SUBO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	12	0.005555	COPI	INFUI	MEAN
MASS-LINK	13				
PERLND PWATER		0.083333	COPY	INPUT	MEAN
END MASS-LINK	13				

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Strawberry-Fields-001.wdm MESSU 25 MitStrawberry-Fields-001.MES MitStrawberry-Fields-001.L61 27 28 MitStrawberry-Fields-001.L62 POCStrawberry-Fields-0011.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 8 IMPLND 1 RCHRES COPY 1 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Field Base-Rock Gravel Be MAX 1 2 30 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 501 1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # -# * * * in out 1 1 1 1 27 16 C, Lawn, Flat 0 END GEN-INFO *** Section PWATER*** ACTIVITY

 # # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

 16
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********

16 0 0 4 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 16
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWATER input info: Part 2***FORESTLZSNINFILTLSURSLSURKVARYAGWRC^450.034000.050.50.996 PWAT-PARM2 <PLS > # - # ***FOREST LZSN INFILT .6 0 4.5 0.03 16 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP 16 0 0 2 INFILD DEEPFR BASETP AGWETP 0 2 0 0 END PWAT-PARM3 PWAT-PARM4

 WAT-PARM4

 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR

 16
 0.1
 0.25
 0.25

 * * * IRC INTFW LZETP *** 0.25 0.5 6 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1 GWVS 16 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** in out *** 1 1 1 27 0 8 SIDEWALKS/FLAT END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL 8 0 0 1 0 0 0 * * * END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ********* 8 0 0 4 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 8 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2 <PLS >
 # - # ***
 LSUR
 SLSUR
 NSUR
 RETSC

 8
 400
 0.01
 0.1
 0.1
 8 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS >

- # ***PETMAX PETMIN 8 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 8 0 0 8 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Tbl# *** <Name> # <-factor-> Field #2 - Converted*** 1.307 RCHRES 1 2 0.874 RCHRES 1 5 PERLND 16 IMPLND 8 *****Routing***** COPY112COPY115COPY50117 1.307 PERLND 16 0.874 IMPLND 8 RCHRES 1 1 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # #<-factor->strg <Name> # # <Name> # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out * * * Field Base-Rock -007 2 1 1 1 28 0 1 1 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 0 0 0 0 0 0 0 0 0 1 END ACTIVITY PRINT-INFO # -# HYDR ADCA CONS HEATSEDGQL OXRX NUTR PLNK PHCB PIVLPYR1400000019 * * * * * * * * * 1 END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 * * * * * * <----><----><----><-----> 1 1 0.05 0.0 0.0 0.5 0.0 END HYDR-PARM2

HYDR-INIT RCHRES Init # - # *** *** ac	c-ft for ea	al value ach possible	of COLIND	Initia for eac	l value o h possible ><><	exit
1 END HYDR-INIT END RCHRES		5.0 0.0			0.0 0.0	
SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 91 5	3					
Depth (ft) (ac 0.000000 1.74 0.006478 1.74 0.012956 1.74 0.012956 1.74 0.025911 1.74 0.032389 1.74 0.038867 1.74 0.045344 1.74 0.051822 1.74 0.058300 1.74 0.058300 1.74 0.064778 1.74 0.071256 1.74 0.071256 1.74 0.097167 1.74 0.097167 1.74 0.103644 1.74 0.103644 1.74 0.103644 1.74 0.123078 1.74 0.123078 1.74 0.126033 1.74 0.126033 1.74 0.142511 1.74 0.148989 1.74 0.155467 1.74 0.161944 1.74 0.161944 1.74 0.161944 1.74 0.168422 1.74 0.161944 1.74 0.161944 1.74 0.161944 1.74 0.181378 1.74 0.181378 1.74 0.200811 1.74 0.207289 1.74 0.207289 1.74 0.207289 1.74 0.207289 1.74 0.207289 1.74 0.226722 1.74 0.226722 1.74 0.226722 1.74 0.226722 1.74 0.22672 1.74 0.227854 1.74 0.22672 1	AreaVolume (acre-ft)87600.00000087600.0074787600.01495387600.01495387600.02243087600.02243087600.02243087600.02243087600.022990687600.03364487600.03738387600.04859787600.04859787600.04859787600.05981287600.05981287600.05981287600.05981287600.06728987600.07102787600.07476587600.07476587600.07476587600.08598087600.08719587600.10933787600.10933787600.10933787600.10933787600.12336387600.12336387600.12336387600.12336387600.12336387600.12336387600.12336387600.12336387600.13457887600.13236387600.13457887600.13457887600.16074587600.1796087600.1796387600.1796387600.1796387600.1796387600.1796387600.1796387600.1796387600.17963 <td< td=""><td>(cfs) (cfs) 0.000000 0.093436 0.093436 0.193436 0.114435 0.132138 0.147735 0.161835 0.174802 0.198207 0.208928 0.219126 0.228869 0.238215 0.247207 0.255884 0.264276 0.272409 0.280307 0.280307 0.287988 0.295469 0.295469 0.302766 0.302766 0.302766 2.302766 0.309891 0.316855 0.323670 0.330345 0.336887 0.336887 0.343304 0.349604 0.355792 0.361874 0.367856 0.373742 0.367856 0.373742 0.361874 0.343047 0.4428101 0.442804 0.443204 0.443204 0.443204 0.4452946 0.4452946 0.4452946 0.4457739 0.462482 0.4471826 0.477826 0.476430 0.476430</td><td>Outflow2 (cfs) 0.00000 0.044083 0.04408</br></td><td>Velocity (ft/sec)</td><td>Travel Tin (Minutes</td><td></td></td<>	(cfs) (cfs) 0.000000 0.093436 0.093436 0.193436 0.114435 0.132138 0.147735 0.161835 0.174802 0.198207 0.208928 0.219126 0.228869 0.238215 0.247207 0.255884 0.264276 0.272409 0.280307 0.280307 0.287988 0.295469 0.295469 0.302766 0.302766 0.302766 2.302766 0.309891 0.316855 0.323670 0.330345 0.336887 0.336887 0.343304 0.349604 0.355792 0.361874 0.367856 0.373742 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.367856 0.373742 0.361874 0.343047 0.4428101 0.442804 0.443204 0.443204 0.443204 0.4452946 0.4452946 0.4452946 0.4457739 0.462482 0.4471826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.477826 0.476430	Outflow2 (cfs) 0.00000 	Velocity (ft/sec)	Travel Tin (Minutes	

0.349800 1.7487 0.356278 1.7487 0.362756 1.7487 0.369233 1.7487 0.375711 1.7487 0.382189 1.7487 0.382189 1.7487 0.388667 1.7487 0.395144 1.7487 0.401622 1.7487 0.401622 1.7487 0.401622 1.7487 0.401622 1.7487 0.421056 1.7487 0.421056 1.7487 0.424033 1.7487 0.434011 1.7487 0.446967 1.7487 0.4459922 1.7487 0.459922 1.7487 0.459922 1.7487 0.466400 1.7487 0.472878 1.7487 0.472878 1.7487 0.492311 1.7487 0.492311 1.7487 0.492311 1.7487 0.505267 1.7487 0.518222 1.7487 0.511744 1.7487 0.518222 1.7487 0.524700 1.7487 0.524700 1.7487 0.531178 1.7487 0.531178 1.7487 0.557089 1.7487 0.563567 1.7487 0.563567 1.7487 0.576522 1.7487 0.583000 1.7487 END FTABLE 1 END FTABLE 1	260 0.205605 260 0.209343 260 0.213081 260 0.216819 260 0.220558 260 0.220558 260 0.220558 260 0.224296 260 0.231773 260 0.235511 260 0.235511 260 0.242987 260 0.242987 260 0.246726 260 0.246726 260 0.257940 260 0.265417 260 0.265417 260 0.2654177 260 0.2654177 260 0.272893 260 0.276632 260 0.287847 260 0.321831 260 0.33159 260 0.344487 260 0.355815 260 0.378471 260 0.389799 260 0.401127 260 0.423784	0.489980 (0.494414 (0.498809 (0.503166 (0.507485 (0.511768 (0.511768 (0.520227 (0.524406 (0.528551 (0.532665 (0.536746 (0.540797 (0.544818 (0.552772 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.556707 (0.575975 (0.575950 (0.57595) (0.575950 (0.57595) (0.5	0.044083 0.04083 0.04083 0.04083 0.04083 0.04083 0.04083 0.04083 0.04083 0.04083 0		
EXT SOURCES<-Volume-> <member< td=""><name>#WDM2PRECWDM2PRECWDM1EVAPWDM1EVAP</name></member<>	<pre>> SsysSgap<n #="" 0.76="" 0.76<="" 1.2="" engl="" pre="" strg<-fa="" tem=""></n></pre>	actor->strg	<name> # PERLND 1 IMPLND 1 PERLND 1</name>	ls> <-Grp> # 999 EXTNL 999 EXTNL 999 EXTNL 999 EXTNL	<name> # # *** PREC</name>
END EXT SOURCES					
RCHRES1HYDRRCHRES1HYDRRCHRES1HYDR	<name> # #<-fa RO 1 1 O 1 1 O 2 1 STAGE 1 1 MEAN 1 1</name>		<name> # WDM 1000 WDM 1001 WDM 1002 WDM 1003 WDM 701</name>	<name> t FLOW E1 FLOW E1 FLOW E1 STAG E1 FLOW E1</name>	sys Tgap Amd *** tem strg strg*** NGL REPL NGL REPL NGL REPL NGL REPL NGL REPL NGL REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<name> # #<-fa 2</name>		<target> <name> RCHRES</name></target>	<-Grp>	<-Member->*** <name> # #*** IVOL</name>
MASS-LINK IMPLND IWATER	5 SURO 0.0	083333	RCHRES	INFLOW	IVOL

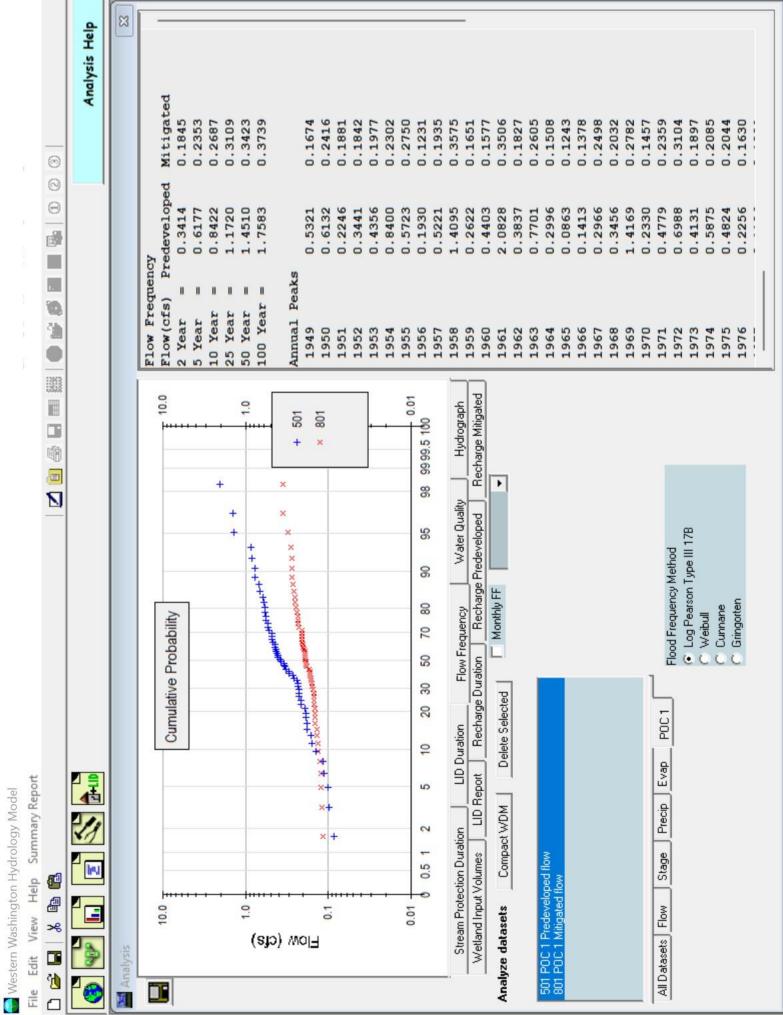
END MASS-LINK	5					
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.08	33333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.08	33333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES OFLOW END MASS-LINK	17 OVOL 17	1		СОРҮ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File


Disclaimer

Legal Notice

This program and accompanying documentation is provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. Clear Creek Solutions, Inc. disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions, Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions, Inc. has been advised of the possibility of such damages.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

🚔 WWHM2012 Strawberry-Fields-001		
File Edit View Help Summary Report		
		000
		Analysis Help
🛤 Analysis		X
	1 B	-
Cumulative Probability	Es) 070 -	0801 15m
		0 2353
	10 Year = 1.1744	0.2687
	I	0.3109
+ +	50 Year = 1.8096	0.3423
+ + + + + + + + + + + + + + + + + + +		6010.0
1.0 =	Annual Peaks	
		0.1674
c		0.2416
× × × × × × × × × × × × × × × × × × ×		0.1881
	PC/C.U 2021	0 1077
		0.2302
	1955 0.8174	0.2750
0 0.5 1 2 5 10 20 30 50 70 80 90 95 98 9999.5 100	1956 0.3111	0.1231
		0.1935
Stream Protection Duration LID Duration Flow Frequency Water Quality Hydrograph		0.3575
Wetland Input Volumes UID Report Recharge Duration Recharge Predeveloped Recharge Mitigated	1959 0.5438 1960 0.5438	0.1651
Analuze datasets Commant W/DM Delete Selected C Monthly FF		0.3506
in a second line		0.1827
4 DEVALUED DAILY D'AUDUATENCEN LIAIC		0.2605
I PUTALLUP UALT EVAP W/JENSEN-FIAIS 2 Everett		0.1508
501 PDC 1 Predeveloped flow	1966 0.4737 1966	0.1378
801 POC 1 Mitigated flow		0.2498
1000 Field Base-Rock Gravel Bed ALL OUTLETS Mitigated 1001 Field Base-Rock Gravel Bed OUTLET 1 Mitigated		0.2032
1002 Field Base-Rock Gravel Bed OUTLET 2 Miggaed		0.2782
Fvan PDC1	1970 0.4379 1971 0.7818	0.1457 0.2359
	1972 1.0336	0.3104
Cog Pearson Type III 178	1973 0.7684	0.1897
		0.2085
C. Grinaaten		0.2044
	T3/10 0.43/1	0.1630

APPENDIX D CONVEYANCE CAPACITY CALCULATIONS

TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

CEKO PN	l: 2207.01		Project Name	· Straw	horn, Field	s - Field #2 Con	version	Pare	. 1	of	1									
	Conveyance	-	•	. 50400	berry rielu	3 - 1 leiu #2 coli	VEISION	rage	1	- 01		-								
Prepared By		1 1	10/18/2022									-								
			10,10,2022	-																
						CONVEY	ANCE CAPA	CITY CALC	JLATIONS	PHASE 1	- FIELD #2	CONVERTE	D, FIELDS #1	& #3 REM	AIN GRASS)					
							USING W	WHM DAT	A FOR FLO	WS AND	THE MANN	ING EQUA	TION FOR CO	NVEYNAC	E					
						C 11		Storm:												
					Run:	Site		INFALL IN II	100	YEAR, 24	4 HOUR 3.5									
				COFFEICI		i" EQUATION:	TOTAL NA	a=	3.50	b=	0.63									
				COLITICI		Lecontion.		<u>u</u> -	5.50	5-	0.03									
Locat	ion	196				Time of	Rain						Pipe	%	Veloc	Flow				
		Area	Runoff	\sim	SUPP	Concen.	Intens	Runoff	n	Diam	Slope	Length	Capac	Capac	Full	Time	Remarks	CAPACITY	VELOC	SLOPE
From	То	(Acre)	Coef	A*C	A*C	(min.)	(Im/lar)	(cfs)	Value	(in.)	(%)	(ft)	(cfs)	Used	(ft/sec)	(min)		CHECK	CHECK	CHECK
Field #2 - V	Vest Side																			
CB-06	CB-05			\square			\square	0.20	0.014	8	0.275	154	0.6	34.0	1.69	1.52		OK	LOW	OK
CB-05	CB-04							0.20	0.014	8	0.275	155	0.6	34.0	1.69	1.53		OK	LOW	OK
CB-04	CB-03							0.20	0.014	8	0.275	36	0.6	34.0	1.69	0.36		OK	LOW	OK
Field #3 - V			\sim	< _		~	< _											1		
CB-03	CB-02			\sim			\sim	0.20	0.014	10	0.250	109	1.0	19.7	1.87	0.97		OK	LOW	OK
CB-02 CB-01	CB-01 OUTFALL			\sim				0.20	0.014	10 10	0.250	171 37	1.0	19.7 19.7	1.87 1.87	1.53 0.33		OK	LOW	OK
Field #2 - E								0.20	0.014	10	0.230	37	1.0	15.7	1.07	0.33		OK	LOW	OK
CB-12	CB-11	\sim	\sim	\sim	\sim	<u> </u>	\sim	0.20	0.014	8	0.275	162	0.6	34.0	1.69	1.60		ОК	LOW	ОК
CB-11	CB-10	\sim		\sim	\sim		\sim	0.20	0.014	8	0.275	157	0.6	34.0	1.69	1.55		OK	LOW	OK
CB-10	CB-09	\sim		\sim	\sim		\sim	0.20	0.014	12	0.560	36	2.5	8.1	3.15	0.19		OK	OK	OK
Field #3 - I	East Out	· · · · · ·																		
CB-09	CB-08	/						0.20	0.014	12	0.250	172	1.7	12.1	2.11	1.36		OK	OK	OK
CB-08	CB-07	/						0.20	0.014	12	0.250	162	1.7	12.1	2.11	1.28		OK	OK	OK
CB-07	OUTFALL	/		\sim			\sim	0.20	0.014	12	0.250	43	1.7	12.1	2.11	0.34		OK	OK	OK

	: 2207.01 :: Conveyance (:: CPK	- Capacity Ca	Project Name: Iculations 10/18/2022	Straw	berry Field	s - Field #2 Con	version	Page:	1	of	1									
				-									1, #2, & #3 CC TION FOR CO							
					Run:	Site		Storm:	100	YEAR, 24										
							TOTAL RA	INFALL IN I	NCHES:		3.5									
				COEFFICIE	ENTS FOR "	i" EQUATION:		a=	3.50	b=	0.63									
Locat	ion	1+c				Time of	Raip		1				Pipe	%	Veloc	Flow			1	
	1	Area	Runoff		Stree	Concen.	Intens	Runoff	n	Diam	Slope	Length	Capac	Capac	Full	Time	Remarks	CAPACITY	VELOC	SLOPE
From	То	(Acre)	Coef	A*C	A*C	(min.)	(Im/lar)	(cfs)	Value	(in.)	(%)	(ft)	(cfs)	Used	(ft/sec)	(min)		CHECK	CHECK	CHECK
Field #1 - W	Vest Side																			
CB-14	CB-13			\sim				0.20	0.014	8	0.275	188	0.6	34.0	1.69	1.86		ОК	LOW	OK
CB-13	CB-10A	\sim		\sim	\sim		\sim	0.20	0.014	8	0.275	155	0.6	34.0	1.69	1.53		OK	LOW	OK
Field #1 - E	ast Side											· · ·								
CB-17	CB-16			\sim				0.20	0.014	8	0.275	146	0.6	34.0	1.69	1.44		OK	LOW	OK
CB-16	CB-15			\sim	\sim			0.20	0.014	8	0.275	174	0.6	34.0	1.69	1.72		OK	LOW	OK
CB-15	CB-10A				\sim		\sim	0.20	0.014	8	0.275	227	0.6	34.0	1.69	2.24		OK	LOW	OK
CB-10A	CB-10	/					\langle	0.40	0.014	10	0.275	16	1.1	37.5	1.96	0.14		OK	LOW	OK
Field #2 - W	Vest Side																			
CB-06	CB-05	/			/		/	0.20	0.014	8	0.275	154	0.6	34.0	1.69	1.52		OK	LOW	OK
CB-05	CB-04	/		/	/		/	0.20	0.014	8	0.275	155	0.6	34.0	1.69	1.53		OK	LOW	OK
CB-04	CB-03	/		/	/		7	0.20	0.014	8	0.275	36	0.6	34.0	1.69	0.36		OK	LOW	OK
Field #3 - V	Vest Out																			
CB-03	CB-02	/		/	/		/	0.40	0.014	10	0.250	109	1.0	39.3	1.87	0.97		OK	LOW	OK
CB-02	CB-01							0.40	0.014	10	0.250	171	1.0	39.3	1.87	1.53		OK	LOW	OK
CB-01	OUTFALL						\sum	0.40	0.014	10	0.250	37	1.0	39.3	1.87	0.33		OK	LOW	OK
Field #2 - E																				
CB-12	CB-11			\sim	\sim		\sim	0.20	0.014	8	0.275	162	0.6	34.0	1.69	1.60		OK	LOW	OK
CB-11	CB-10			\sim			\sim	0.20	0.014	8	0.275	157	0.6	34.0	1.69	1.55		OK	LOW	OK
CB-10	CB-09			\sim			\sim	0.60	0.014	12	0.560	36	2.5	24.2	3.15	0.19		OK	OK	OK
Field #3 - E		-		-	-															
CB-09	CB-08			\sim			\sim	0.80	0.014	12	0.250	172	1.7	48.4	2.11	1.36		OK	OK	OK
CB-08	CB-07							0.80	0.014	12	0.250	162	1.7	48.4	2.11	1.28		OK	OK	OK
CB-07	OUTFALL	\sim	-	\sim	\sim			0.80	0.014	12	0.250	43	1.7	48.4	2.11	0.34		OK	OK	OK

BACKWATER PIPE SIZING

(Runoff Calculated from WWHM Modeling) (Pipe Capacity and Freeboard Estimated by King County Backwater Method)

	22007.01 Conveyance				berry Field	ds - Field #2	Conversion	Page:	1	of	1								
Prepared By:	СРК	Date:	10/25/	2022															
												RUN(S): STORM:							
		(1)	(2)	(3)	(4)	(5)	(6)		(7)	(8)	(9) BARREL	(10)	FRICT.	(11)	(12) ENTR		(13) ENTR	(14) EXIT	(15) OUTLET
PIP	E		RUN	PIPE		OUTLET	INLET	PIPE	BARREL	BARREL	VEL	тw	SLOPE	FRIC	HGL		HEAD	HEAD	CONTRO
SEGM CB to		Q (cfs)	LEN (ft)	SIZE (in)	"n"	ELEV (ft)	ELEV (ft)	So (%)	AREA (sq ft)	VEL (fps)	HEAD (ft)	ELEV (ft)	Sf (%)	LOSS (ft)	ELEV (ft)	Ke	LOSS (ft)	LOSS (ft)	ELEV (ft)
Outlet	CB-07	0.80	43	12	0.012	105.50	105.61	0.26%	0.79	1.02	0.02	106.75	0.04%	0.02	106.77	0.20	0.00	0.02	106.79
CB-07	CB-08	0.80	162	12	0.012	105.61	106.02	0.25%	0.79	1.02	0.02	106.77	0.04%	0.07	106.84	0.20	0.00	0.02	106.86
CB-08	CB-09	0.80	172	12	0.012	106.02	106.45	0.25%	0.79	1.02	0.02	106.84	0.04%	0.07	106.92	0.20	0.00	0.02	106.94
CB-09	CB-010	0.80	36	12	0.012	106.45	106.65	0.56%	0.79	1.02	0.02	106.97	0.04%	0.02	106.99	0.20	0.00	0.02	107.01

ENTRANCE HEAD LOSS: Ke FROM Tbl 4.3.5A KCSWDM INLET CONTROL: Hw/D FROM Fig 4.3.5C OR Fig 4.3.5D KCSWDM

BEND HEAD LOSS: Kb FROM Fig 4.3.4E KCSWDM JUNCTION HEAD LOSS: FROM Fig 4.3.4F KCSWDM

USE

CONTROL

ELEV

(ft)

106.79

106.86

106.99

107.19

(17) APPR

VEL

HEAD

(ft)

-0.02

-0.02

-0.02

0.00

(16) INLET

CONTROL

ELEV

(ft)

106.15

106.99

107.19

Hw/D

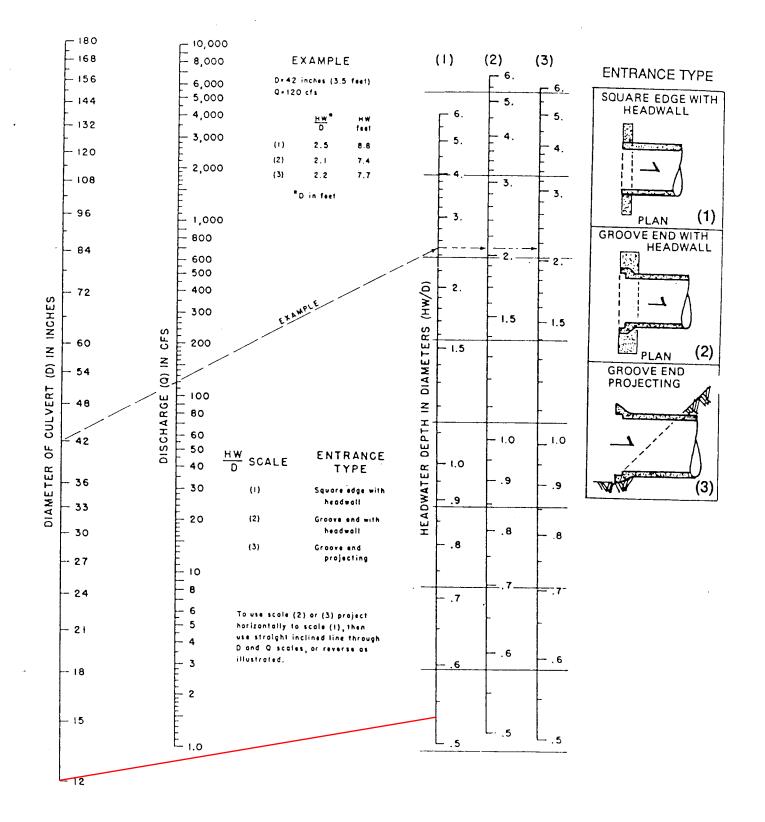
0.54

0.54

Hw

(ft)

0.54


0.54

0.54 0.54

0.54 0.54 106.56

	(18)	(19)	(20)	(21)				
	BEND	JUNC	HEAD LOSS			DEPTH	CB	FREEBOARD
	HEAD	HEAD	FROP-T	HGL	CB	TO	RIM	
Kb	LOSS	LOSS	BED K=0.5	ELEV	NO.	INVERT	ELEV	
	(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)
0.00	0.000	0.00	0.00	106.77	CB-07	1.16	109.40	2.63
0.00	0.000	0.00	0.00	106.84	CB-08	0.82	109.40	2.56
0.00	0.000	0.00	0.00	106.97	CB-09	0.52	109.40	2.43
0.00	0.000	0.00	0.00	107.19	CB-010	0.54	109.40	2.21

FIGURE 4.3.5C HEADWATER DEPTH FOR SMOOTH INTERIOR PIPE CULVERTS WITH INLET CONTROL

APPENDIX E OPERATION AND MAINTENANCE DOCUMENTATION

TECHNICAL INFORMATION REPORT Strawberry Fields Conversion Marysville, Washington

CEKO PN: 22007.01

V-4.6 Maintenance Standards for Drainage Facilities

The facility-specific maintenance standards contained in this section are intended to be conditions for determining if maintenance actions are required as identified through inspection. They are not intended to be measures of the facility's required condition at all times between inspections. In other words, exceedence of these conditions at any time between inspections and/or maintenance does not automatically constitute a violation of these standards. However, based upon inspection observations, the inspection and maintenance schedules shall be adjusted to minimize the length of time that a facility is in a condition that requires a maintenance action.

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Per- formed
	Trash & Debris	Any trash and debris which exceed 1 cubic feet per 1,000 square feet. In general, there should be no visual evidence of dumping. If less than threshold all trash and debris will be removed as part of next scheduled main- tenance.	Trash and debris cleared from site
General	•	may constitute a haz-	No danger of poisonous vegetation where main- tenance personnel or the public might normally be. (Coordinate with local health department) Complete eradication of noxious weeds may not be possible. Compliance with State or local erad- ication policies required
	Contaminants	Any evidence of oil,	No contaminants or pol-

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Per- formed
	and Pollution	gasoline, contaminants or other pollutants (Coordinate removal/cleanup with local water quality	lutants present.
		Any evidence of rodent holes if facility is acting	dam or berm repaired.
	Rodent Holes	as a dam or berm or	(Coordinate with local health department; coordinate with Ecology Dam Safety Office if pond exceeds 10 acre-feet.)
	Beaver Dams	Dam results in change or function of the facil- ity.	Facility is returned to design function. (Coordinate trapping of beavers and removal of dams with appropriate per-
	Insects	When insects such as wasps and hornets interfere with main- tenance activities.	mitting agencies) Insects destroyed or removed from site. Apply insecticides in com- pliance with adopted IPM policies
	Tree Growth and Hazard Trees	ity (i.e., slope mowing, silt removal, vactoring,	Trees do not hinder main- tenance activities. Har- vested trees should be recycled into mulch or other beneficial uses (e.g., alders for firewood). Remove hazard Trees

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Per- formed
		lf dead, diseased, or dying trees are iden- tified	
		(Use a certified Arbor- ist to determine health of tree or removal requirements)	
Side Slopes of Pond	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion. Any erosion observed on a compacted berm embankment.	Slopes should be sta- bilized using appropriate erosion control measure (s); e.g.,rock rein- forcement, planting of grass, compaction. If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.
Storage Area	Sediment	Accumulated sediment that exceeds 10% of the designed pond depth unless otherwise specified or affects inletting or outletting condition of the facility.	Sediment cleaned out to designed pond shape and depth; pond reseeded if necessary to control erosion.
	Liner (if Applic- able)	Liner is visible and has more than three 1/4- inch holes in it.	Liner repaired or replaced. Liner is fully covered.
Ponds Berms (Dikes)	Settlements	Any part of berm which has settled 4 inches lower than the design elevation If settlement is appar- ent, measure berm to determine amount of settlement	Dike is built back to the design elevation.

Maintenance	Defect	Conditions When Maintenance Is	Results Expected When Maintenance Is Per-
Component		Needed	formed
		Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the set- tlement.	
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue. (Recommend a Goeth- echnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	Piping eliminated. Erosion potential resolved.
Emergency Over- flow/ Spillway and Berms over 4 feet in height	Tree Growth	Tree growth on emer- gency spillways cre- ates blockage problems and may cause failure of the berm due to uncon- trolled overtopping. Tree growth on berms over 4 feet in height may lead to piping through the berm which could lead to fail- ure of the berm.	Trees should be removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be removed and the berm restored. A licensed civil engineer should be consulted for proper berm/spillway res- toration.
	Piping	Discernable water flow through pond berm. Ongoing erosion with	Piping eliminated. Erosion potential resolved.

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Per- formed
		potential for erosion to continue.	
		(Recommend a Goeth- echnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	
Emergency Over- flow/Spillway	Emergency Over- flow/Spillway	Only one layer of rock exists above native soil in area five square feet or larger, or any expos- ure of native soil at the top of out flow path of spillway.	Rocks and pad depth are restored to design stand- ards.
	Erosion	(Rip-rap on inside slopes need not be replaced.) See "Side Slopes of Pond"	

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Main tenance is performed
General	Trash & Debris	Trash or debris which is located imme- diately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%. Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the low- est pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe. Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height. Dead animals or vegetation that could gen- erate odors that could cause complaints or dangerous gases (e.g., methane).	No Trash or debris loc- ated imme- diately in front of catch basin or on grate open- ing. No trash or debris in the catch basin. Inlet and out let pipes free of trash or debris. No dead animals or vegetation present within the catch basin.
	Sediment	pipe into or out of the basin, but in no case	No sedimen in the catch
	Structure Damage to Frame and/or Top Slab	is to make sure no material is running into	Top slab is free of holes and cracks. Frame is sit-

Table V-4.5.2(5) Maintenance Standards - Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Main- tenance is performed
		Frame not sitting flush on top slab, i.e., sep- aration of more than 3/4 inch of the frame from the top slab. Frame not securely attached	ting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound. Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	repaired to design stand- ards. Pipe is
	Settlement/ Misalignment	If failure of basin has created a safety, func- tion, or design problem.	Basin replaced or repaired to design stand- ards.
	Vegetation	more than 10% of the basin opening	No veget- ation block- ing opening to basin. No veget- ation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.
Catch Basin	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires main- tenance.	Catch basin cover is closed
Cover	Locking Mech- anism Not	Mechanism cannot be opened by one main- tenance person with proper tools. Bolts into	

Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Main- tenance is performed
	Working	frame have less than 1/2 inch of thread.	proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access	Cover can be removed by one main- tenance per-
		to maintenance.)	son.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, mis- alignment, rust, cracks, or sharp edges.	Ladder meets design stand- ards and allows main- tenance per- son safe access.
	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate open- ing meets design stand- ards.
Metal Grates (If Applic- able)	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

Table V-4.5.2(5) Maintenance Standards - Catch Basins (continued)

Table V-4.5.2(8) Maintenance Standards - Typical Biofiltration Swale

Maintenance Component	Defect or Prob-	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
	mulation on	Sediment depth exceeds 2 inches.	Remove sediment deposits on grass treatment area of the bio-swale. When finished, swale should be level from side to side and drain freely toward outlet. There should be no areas of standing water once inflow has ceased.
	Standing Water	When water stands in the swale between storms and does not drain freely.	Any of the following may apply: remove sediment or trash blockages, improve grade from head to foot of swale, remove clogged check dams, add underdrains or convert to a wet

Maintenance Component	Defect or Prob- lem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
	•		Level the spreader and clean so that flows are spread evenly over entire swale width.
		when it has been	Add a low-flow pea-gravel drain the length of the swale or by-pass the baseflow around the swale.
	Poor Vegetation Coverage	eroded patches occur in more than 10% of the	Determine why grass growth is poor and correct that condition. Re-plant with plugs of grass from the upper slope: plant in the swale bottom at 8- inch intervals. Or re-seed into loosened, fertile soil.
	Vegetation	than 10-inches); when nuisance weeds and other	Mow vegetation or remove nuisance vegetation so that flow not impeded. Grass should be mowed to a height of 3 to 4 inches. Remove grass clip- pings.
	Excessive Shad- ing	Grass growth is poor because sunlight does not reach swale.	If possible, trim back over-hanging limbs and remove brushy vegetation on adjacent slopes.

Table V-4.5.2(8) Maintenance Standards - Typical Biofiltration Swale (continued)

Table V-4.5.2(8) Maintenance Standards - Typical Biofiltration Swale (continued)

Maintenance Component	Defect or Prob- lem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
	Inlet/Outlet	Inlet/outlet areas clogged with sed- iment and/or debris.	Remove material so that there is no clogging or blockage in the inlet and outlet area.
	Trash and Debris Accumulation	Trash and debris accumulated in the bio-swale.	Remove trash and debris from bioswale.
	Erosion/Scouring	Eroded or scoured swale bottom due to flow chan- nelization, or higher flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. If bare areas are large, generally greater than 12 inches wide, the swale should be re-graded and re- seeded. For smaller bare areas, over- seed when bare spots are evident, or take plugs of grass from the upper slope and plant in the swale bottom at 8-inch intervals.

Table V-4.5.2(9) Maintenance Standards - Wet Biofiltration Swale

Maintenance Component	Defect or Prob- lem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
General	Sediment Accu- mulation		Remove sediment deposits in treatment area.
	Water Depth	a denth of anolit 4	Build up or repair outlet berm so that water is retained in the wet swale.
	Wetland Veget- ation	sparse and does not provide adequate fil- tration, OR veget-	Determine cause of lack of vigor of vegetation and correct. Replant as needed. For excess- ive cattail growth, cut cattail shoots back and compost off-site.

Maintenance Component	Defect or Prob- lem	Condition When Maintenance is Needed	Recommended Maintenance to Correct Problem
		by very dense clumps of cattail, which do not allow water to flow through the clumps.	Note: normally wetland veget- ation does not need to be har- vested unless die-back is causing oxygen depletion in downstream waters.
	Inlet/Outlet	Inlet/outlet area clogged with sed- iment and/or debris.	Remove clogging or blockage in the inlet and outlet areas.
	Trash and Debris Accumulation	See "Detention Ponds" (No. 1).	Remove trash and debris from wet swale.
	Erosion/Scouring	Swale has eroded or scoured due to flow channelization, or higher flows.	Check design flows to assure swale is large enough to handle flows. By-pass excess flows or enlarge swale. Replant eroded areas with fibrous-rooted plants such as Juncus effusus (soft rush) in wet areas or snowberry (Symphoricarpos albus) in dryer areas.

Table V-4.5.2(9) Maintenance Standards - Wet Biofiltration Swale(continued)

Maintenance Component	Detect	Condition When Maintenance is Needed	Results Expected When Main- tenance is Performed
General	Water level	First cell is empty, doesn't hold water.	Line the first cell to maintain at least 4 feet of water. Although the second cell may drain, the first cell must remain full to control turbulence of the incoming flow and reduce sed- iment resuspension.
	Trash and Debris	Accumulation that exceeds 1 CF per	Trash and debris removed from pond.

Table V-4.5.2(11) Maintenance Standards - Wetponds

Maintenance Component	Detect	Condition When Maintenance is Needed	Results Expected When Main- tenance is Performed
		1000-SF of pond area.	
	Inlet/Outlet Pipe		No clogging or blockage in the inlet and outlet piping.
	Sediment Accumulation in Pond Bot- tom	Sediment accu- mulations in pond bot- tom that exceeds the depth of sediment zone plus 6-inches, usually in the first cell.	Sediment removed from pond bot- tom.
	Oil Sheen on Water		Oil removed from water using oil- absorbent pads or vactor truck. Source of oil located and corrected. chronic low levels of oil persist, plar wetland plants such as Juncus effusus (soft rush) which can uptake small concentrations of oil.
	Erosion	Erosion of the pond's side slopes and/or scouring of the pond bottom, that exceeds 6-inches, or where continued erosion is prevalent.	Slopes stabilized using proper erosion control measures and repair methods.
	Settlement of Pond Dike/Berm		Dike/berm is repaired to spe- cifications.
	Internal Berm		Berm surface is leveled so that wate flows evenly over entire length of

Maintenance Component	LIATACT	Condition When Maintenance is Needed	Results Expected When Main- tenance is Performed
			berm.
	Overflow Spillway	Rock is missing and soil is exposed at top of spillway or outside slope.	Rocks replaced to specifications.

Table V-4.5.2(20) Maintenance Standards - Compost AmendedVegetated Filter Strip (CAVFS) (continued)

Maintenance Component	Detect	Conditions When Main- tenance is Needed	Results Expected When Maintenance is Performed
	Erosion/scouring	Areas have eroded or scoured due to flow chan- nelization or high flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with a 50/50 mixture of crushed gravel and compost. The grass will creep in over the rock in time. If bare areas are large, generally greater than 12 inches wide, the vegetated filter strip should be regraded and reseeded. For smaller bare areas, overseed when bare spots are evident.
	Flow spreader	Flow spreader is uneven or clogged so that flows are not uniformly distributed over entire fil- ter width.	Level the spreader and clean so that flows are spread evenly over entire filter width

 Table V-4.5.2(21) Maintenance Standards - Bioretention Facilities

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
Facility Footp	rint			
Earthen side slopes and berms	B, S		Erosion (gullies/ rills) greater than 2 inches deep around inlets, outlet, and alongside slopes	 Eliminate cause of erosion and stabilize damaged area (regrade, rock, veget- ation, erosion control matting) For deep channels or cuts (over 3 inches in ponding

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				depth), temporary erosion control meas- ures should be put in place until per- manent repairs can be made.
				 Properly designed, constructed and established facilities with appropriate flow velocities should not have erosion prob- lems except perhaps in extreme events. If erosion problems persist, the following should be reas- sessed: (1) flow volumes from con- tributing areas and bioretention facility sizing; (2) flow velo- cities and gradients within the facility; and (3) flow dis- sipation and erosion protection strategies at the facility inlet.
	A		Erosion of sides causes slope to become a haz- ard	Take actions to eliminate the hazard and stabilize slopes
	A, S		Settlement greater than 3	Restore to design height

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
			inches (relative to undisturbed sections of berm)	
	A, S		Downstream face of berm wet, seeps or leaks evident	Plug any holes and com- pact berm (may require consultation with engin- eer, particularly for larger berms)
	A		Any evidence of rodent holes or water piping in berm	 Eradicate rodents (see "Pest control") Fill holes and com- pact (may require consultation with engineer, par- ticularly for larger berms)
Concrete side- walls	A		Cracks or failure of concrete side- walls	
Rockery side- walls	A		Rockery side walls are insec- ure	Stabilize rockery side- walls (may require con- sultation with engineer, particularly for walls 4 feet or greater in height)
Facility area		All main- tenance visits (at least bian- nually)	Trash and debris present	Clean out trash and debris
Facility bottom area	A, S		Accumulated sediment to extent that infilt- ration rate is	 Remove excess sed- iment Replace any veget- ation damaged or

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
			reduced (see "Ponded water") or surface stor- age capacity sig- nificantly impacted	 destroyed by sed- iment accumulation and removal Mulch newly planted vegetation Identify and control the sediment source (if feasible) If accumulated sed- iment is recurrent, consider adding pre- settlement or installing berms to create a forebay at the inlet
		During/after fall leaf drop	Accumulated leaves in facility	Remove leaves if there is a risk to clogging outlet structure or water flow is impeded
Low per- meability check dams and weirs	A, S		Sediment, veget- ation, or debris accumulated at or blocking (or having the potential to block) check dam, flow con- trol weir or ori- fice	Clear the blockage
	A, S		Erosion and/or undercutting present	Repair and take pre- ventative measures to pre- vent future erosion and/or undercutting

	(continued)					
Maintenance Component		ended Fre- ncy _a Routine Main- tenance	Condition when Main- tenance is Needed (Stand- ards)	Action Needed (Pro- cedures)		
	A		Grade board or top of weir dam- aged or not level	Restore to level position		
Ponded water	B, S		Excessive pond- ing water: Water overflows during storms smaller than the design event or ponded water remains in the basin 48 hours or longer after the end of a storm.	 Ensure that under- drain (if present) is not clogged. If neces- sary, clear under- drain. 		

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				the bioretention soil is likely clogged by sediment accu- mulation at the sur- face or has become overly compacted. Dig a small hole to observe soil profile and identify com- paction depth or clog- ging front to help determine the soil depth to be removed or otherwise rehab- ilitated (e.g., tilled). Consultation with an engineer is recom- mended.
Bioretention soil media	As needed		Bioretention soil media pro- tection is needed when performing main- tenance requir- ing entrance into the facility footprint	 Minimize all loading in the facility foot- print (foot traffic and other loads) to the degree feasible in order to prevent com- paction of biore- tention soils. Never drive equip- ment or apply heavy loads in facility foot- print. Because the risk of compaction is higher during saturated soil

(continued)					
Maintenance		ended Fre- ency _a	Condition when Main-	Action Needed (Pro-	
			d-	cedures)	
				 conditions, any type of loading in the cell (including foot traffic) should be minimized during wet conditions. • Consider measures to distribute loading if heavy foot traffic is required or equipment must be placed in facility. As an example, boards may be placed across soil to distribute loads and minimize compaction. • If compaction occurs, soil must be loosened or otherwise rehabilitated to original design 	
Inlets/Outlets/	/Pines			state.	
			Water is not		
Splash block inlet	A		being directed properly to the facility and away from the inlet structure	Reconfigure/ repair blocks to direct water to facility and away from structure	
Curb cut inlet/outlet	M during the wet season and before severe storm	Weekly during fall leaf drop	Accumulated leaves at curb cuts	Clear leaves (particularly important for key inlets and low points along long, linear facilities)	

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
	is forecasted			
	A		Pipe is dam- aged	Repair/ replace
	W		Pipe is clogged	Remove roots or debris
Pipe inlet/out- let	A, S		Sediment, debris, trash, or mulch reducing capacity of inlet/outlet	 Clear the blockage Identify the source of the blockage and take actions to pre- vent future block- ages
		Weekly during fall leaf drop	Accumulated leaves at inlets/outlets	Clear leaves (particularly important for key inlets and low points along long, linear facilities)
		A	Maintain access for inspections	 Clear vegetation (transplant veget- ation when possible) within 1 foot of inlets and outlets, maintain access pathways Consultation with a landscape architect is recommended for removal, transplant, or substitution of plants
Erosion con- trol at inlet	A		Concentrated flows are caus- ing erosion	Maintain a cover of rock or cobbles or other erosion protection measure (e.g., matting) to protect the ground where con- centrated water enters the facility (e.g., a pipe, curb

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				cut or swale)
Trash rack	S		Trash or other debris present on trash rack Bar screen dam-	Remove/dispose Repair/replace
	^		aged or missing	Теранлеріасе
Overflow	A, S		Capacity reduced by sed- iment or debris	Remove sediment or debris/dispose
Underdrain pipe	Clean pipe as needed	Clean orifice at least bian- nually (may need more fre- quent clean- ing during wet season)	 Plant roots, sed- iment or debris reducing capacity of underdrain Prolonged surface ponding (see "Pon- ded water" 	 Jet clean or rotary cut debris/roots from underdrain(s) If underdrains are equipped with a flow restrictor (e.g., ori- fice) to attenuate flows, the orifice must be cleaned reg- ularly.
Vegetation		1	I	
Facility bottom area and upland slope vegetation	Fall and Spring		Vegetation sur- vival rate falls below 75% within first two years of estab- lishment (unless project O&M manual or record drawing stipulates more	 Determine cause of poor vegetation growth and correct condition Replant as neces- sary to obtain 75% survival rate or greater. Refer to ori- ginal planting plan, or approved jur-

Maintenance	Recommended Fre- quency _a		Condition when Main-	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	tenance is Needed (Stand- ards)	cedures)
			or less than 75% survival rate).	 isdictional species list for appropriate plant replacements (See Appendix 3 - Bioretention Plant List, in the LID Technical Guidance Manual for Puget Sound). Confirm that plant selection is appropriate for site growing conditions Consultation with a landscape architect is recommended for removal, transplant, or substitution of plants
Vegetation (general)	As needed		Presence of dis- eased plants and plant mater- ial	 Remove any diseased plants or plant parts and dispose of in an approved location (e.g., commercial landfill) to avoid risk of spreading the disease to other plants Disinfect gardening tools after pruning to prevent the spread of disease See Pacific North-

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	- tenance is Needed (Stand- ards)	cedures)
				west Plant Disease Management Hand- book for information on disease recog- nition and for addi- tional resources
				 Replant as neces- sary according to recommendations provided for "facility bottom area and upland slope veget- ation".
	s	All pruning seasons (tim- ing varies by species)	Pruning as needed	 Prune trees and shrubs in a manner appropriate for each species. Pruning should be performed by landscape pro- fessionals familiar with proper pruning techniques
Trees and shrubs				 All pruning of mature trees should be per- formed by or under the direct guidance of an ISA certified arborist
	A		Large trees and shrubs interfere with operation of the facility or access for main- tenance	 Prune trees and shrubs using most current ANSI A300 standards and ISA BMPs. Remove trees and

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				shrubs, if necessary.

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
	Fall and Spring		Standing dead vegetation is present	 Remove standing dead vegetation Replace dead vegetation Replace dead vegetation within 30 days of reported dead and dying plants (as practical depending on weather/planting season) If vegetation replacement is not feasible within 30 days, and absence of vegetation may result in erosion problems, temporary erosion control measures should be put in place immediately. Determine cause of dead vegetation and address issue, if possible If specific plants have a high mortality rate, assess the cause and replace with appropriate species. Consultation with a landscape architect is recommended.
	Fall and		Planting	When working

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
	Spring		beneath mature trees	 around and below mature trees, follow the most current ANSI A300 stand- ards and ISA BMPs to the extent prac- ticable (e.g., take care to minimize any damage to tree roots and avoid com- paction of soil). Planting of small shrubs or ground- covers beneath mature trees may be desirable in some cases; such plant- ings should use mainly plants that come as bulbs, bare root or in 4-inch pots; plants should be in no larger than 1-gal- lon containers.
	Fall and Spring		Presence of or need for stakes and guys (tree growth, mat- uration, and sup- port needs)	 Verify location of facility liners and underdrain (if any) prior to stake install- ation in order to pre- vent liner puncture or pipe damage Monitor tree support systems: Repair and adjust as needed to

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				 provide support and prevent damage to tree. Remove tree supports (stakes, guys, etc.) after one growing season or maximum of 1 year.
				 Backfill stake holes after removal. Maintain appropriate height for sight clear-
Trees and shrubs adja- cent to vehicle travel areas (or areas where vis- ibility needs to be main- tained)	A		Vegetation causes some visibility (line of sight) or driver safety issues	 When continued, regular pruning (more than one time/ growing season) is required to maintain visual sight lines for safety or clearance along a walk or drive, consider relocating the plant to a more appropriate location. Remove or transplant if continual safety hazard Consultation with a landscape architect is recommended for removal, transplant, or substitution of

Maintenance		ended Fre- ncy _a	Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				plants
Flowering plants		A	Dead or spent flowers present	Remove spent flowers (deadhead)
Perennials		Fall	Spent plants	Cut back dying or dead and fallen foliage and stems
Emergent vegetation		Spring	Vegetation com- promises con- veyance	Hand rake sedges and rushes with a small rake or fingers to remove dead foliage before new growth emerges in spring or earlier only if the foliage is blocking water flow (sedges and rushes do not respond well to pruning)
Ornamental grasses (per- ennial)		Winter and Spring	Dead material from previous year's growing cycle or dead collapsed foliage	 Leave dry foliage for winter interest Hand rake with a small rake or fingers to remove dead foliage back to within several inches from the soil before new growth emerges in spring or earlier if the foliage collapses and is blocking water flow
Ornamental grasses (ever- green)		Fall and Spring	Dead growth present in spring	 Hand rake with a small rake or fingers to remove dead growth before new growth emerges in spring

Maintenance		ended Fre- ^{ency} a	Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				 Clean, rake, and comb grasses when they become too tall Cut back to ground or thin every 2-3 years as needed
Noxious weeds		M (March - October, pre- ceding seed dispersal)	Listed noxious vegetation is present (refer to current county noxious weed list)	 By law, class A & B noxious weeds must be removed, bagged and dis- posed as garbage immediately Reasonable attempts must be made to remove and dispose of class C noxious weeds It is strongly encour- aged that herbicides and pesticides not be used in order to protect water quality; use of herbicides and pesticides may be prohibited in some jurisdictions Apply mulch after weed removal (see "Mulch")
Weeds		M (March - October, pre- ceding seed dispersal)	Weeds are present	 Remove weeds with their roots manually with pincer-type weeding tools, flame

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				 weeders, or hot water weeders as appropriate Follow IPM pro- tocols for weed man- agement (see "Additional Main- tenance Resources" section for more information on IPM protocols)
Excessive vegetation		Once in early to mid- May and once in early- to mid- September	Low-lying veget- ation growing beyond facility edge onto side- walks, paths, or street edge poses ped- estrian safety hazard or may clog adjacent permeable pave- ment surfaces due to asso- ciated leaf litter, mulch, and soil	 Edge or trim ground-covers and shrubs at facility edge Avoid mechanical blade-type edger and do not use edger or trimmer within 2 feet of tree trunks While some clippings can be left in the facility to replenish organic material in the soil, excessive leaf litter can cause surface soil clogging
	As needed		Excessive veget- ation density inhibits storm- water flow bey- ond design ponding or	Determine whether

Maintenance	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
Component	Inspection	Routine Main- tenance	-Needed (Stand- ards)	cedures)
			becomes a haz- ard for ped- estrian and vehicular cir- culation and safety	 Determine if planting type should be replaced to avoid ongoing main- tenance issues (an aggressive grower under perfect grow- ing conditions should be trans- planted to a location where it will not impact flow) Remove plants that are weak, broken or not true to form; replace in-kind Thin grass or plants impacting facility function without leav- ing visual holes or bare soil areas Consultation with a landscape architect is recommended for removal, transplant, or substitution of plants
	As needed		Vegetation blocking curb cuts, causing excessive sed- iment buildup and flow bypass	Remove vegetation and sediment buildup

Maintenance Component	Recommended Fre- quency _a		Condition when Main-	Action Needed (Pro-
	Inspection	Routine Main- tenance	tenance is Needed (Stand- ards)	cedures)
Mulch		1		O set a set as tak
Mulch		Following weeding	Bare spots (without mulch cover) are present or mulch depth less than 2 inches	 Supplement mulch with hand tools to a depth of 2 to 3 inches Replenish mulch per O&M manual. Often coarse compost is used in the bottom of the facility and arbor- ist wood chips are used on side slopes and rim (above typ- ical water levels)
				 Keep all mulch away from woody stems
Watering	[r	r
		Based on man- ufacturer's instructions	Irrigation system present	Follow manufacturer's instructions for O&M
Irrigation sys- tem (if any)	A		Sprinklers or drip irrigation not dir- ected/located to properly water plants	Redirect sprinklers or move drip irrigation to desired areas
Summer water ing (first year)		Once every 1- 2 weeks or as needed during prolonged dry periods	and ground- covers in first	 10 to 15 gallons per tree 3 to 5 gallons per shrub 2 gallons water per square foot for groundcover areas

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				 Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is moist Use soaker hoses or spot water with a shower type wand when irrigation sys- tem is not present Pulse water to enhance soil absorption, when feasible Pre-moisten soil to break surface tension of dry or hydro- phobic soils/mulch, fol- lowed by sev- eral more passes. With this method , each pass increases soil absorption and allows more water to infilt- rate prior to run- off
				slow-release water- ing device (e.g.,

Maintenance Component	Recommended Fre- quency _a		Condition when Main-	Action Needed (Pro-
	Inspection	Routine Main- tenance	tenance is Needed (Stand- ards)	cedures)
				bucket with a per- forated bottom) for watering newly installed trees when irrigation system is not present
Summer water- ing (second and third years)		Once every 2- 4 weeks or as needed during prolonged dry periods	Trees, shrubs and ground- covers in second or third year of estab- lishment period	 10 to 15 gallons per tree 3 to 5 gallons per shrub 2 gallons water per square foot for groundcover areas Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is moist Use soaker hoses or spot water with a shower type wand when irrigation system is not present Pulse water to enhance soil absorption, when feasible Pre-moisten soil to break surface tension of dry or hydrophobic soils/mulch, fol-

Maintenance Component	Recommended Fre- quency _a		Condition when Main-	Action Needed (Pro-
	Inspection	Routine Main- tenance	tenance is Needed (Stand- ards)	cedures)
				lowed by sev- eral more passes. With this method , each pass increases soil absorption and allows more water to infilt- rate prior to run- off
Summer water- ing (after establishment)		As needed	Established vegetation (after 3 years)	 Plants are typically selected to be drought tolerant and not require regular watering after establishment; however, trees may take up to 5 years of watering to become fully established Identify trigger mechanisms for droughtstress (e.g., leaf wilt, leaf senescence, etc.) of different species and water immediately after initial signs of stress appear Water during drought conditions or more often if necessary to main-

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				tain plant cover
Pest Control Mosquitoes	B, S		Standing water remains for more than 3 days after the end of a storm	 Identify the cause of the standing water and take appropriate actions to address the problem (see "Ponded water") To facilitate maintenance, manually remove standing water and direct to the storm drainage system (if runoff is from non pollutiongenerating surfaces) or sanitary sewer system (if runoff is from pollution-generating surfaces) after getting approval from sanitary sewer authority. Use of pesticides or <i>Bacillus thuringiensis israelensis</i> (Bti) may be considered only as a temporary measure while addressing the standing water cause. If overflow to

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				a surface water will occur within 2 weeks after pesticide use, apply for coverage under the Aquatic Mosquito Control NPDES General Per- mit.
Nuisance animals	As needed		Nuisance anim- als causing erosion, dam- aging plants, or depositing large volumes of feces	 Reduce site conditions that attract nuisance species where possible (e.g., plant shrubs and tall grasses to reduce open areas for geese, etc.) Place predator decoys Follow IPM protocols for specific nuisance animal issues (see "Additional Maintenance Resources" section for more information on IPM protocols) Remove pet waste regularly For public and right-of-way sites consider adding garbage cans with dog bags for picking

Maintenance Component	Recommended Fre- quency _a		Condition when Main- tenance is	Action Needed (Pro-
	Inspection	Routine Main- tenance	Needed (Stand- ards)	cedures)
				up pet waste.
Insect pests	Every site visit asso- ciated with vegetation management		Signs of pests, such as wilting leaves, chewed leaves and bark, spotting or other indicators	 Reduce hiding places for pests by removing diseased and dead plants For infestations, fol- low IPM protocols (see "Additional Maintenance Resources" section for more information on IPM protocols)

Note that the inspection and routine maintenance frequencies listed above are recommended by Ecology. They do not supersede or replace the municipal stormwater permit requirements for inspection frequency required of municipal stormwater permittees for "stormwater treatment and flow control BMPs/facilities".

a Frequency: A = Annually; B = Biannually (twice per year); M = Monthly; W = At least one visit should occur during the wet season (for debris/clog related maintenance, this inspection/maintenance visit should occur in the early fall, after deciduous trees have lost their leaves); S = Perform inspections after major storm events (24-hour storm event with a 10-year or greater recurrence interval).

IPM - Integrated Pest Management

ISA - International Society of Arboriculture